

Digitized by the Internet Archive in 2016

JOURNAL

or

THE ASIATIC SOCIETY
 OF

HENGAL.

VOL. II.

if it

JOURNAL

of

THEASIATIC SOCIETY

BENGAL.

—***
EDITED BY
JAMES PRINSEP, F. R. S.
SECRETARY OF TIE ASIATIC SOCIETY.
VOL. II.
\section*{JANUARY TO DECEMBER, 1833.}

"It wiil flourish, if naturalists, chemists, antiquaries, philologers, and men of science, in different parts of Asia, will commit their observations to writing, and send them to the Asiatic Society at Calcutta; it will languish, if such communications shall be long intermitted ; and it will die away, if they shall entirely cease."

Sir Wm. Jones.

Calcutta:

FRINTED AT THE BAPTIST MISSION PRESS, CIRCULAR ROAD SOLD BY MESSRS. THACKER AND CO. ST. ANDREW'S LIBRARY.
1833.

PREFACE.

$\longrightarrow 8$

On completion of this second volume of the Journal of the Asiatic Society, the Editor feels it to be due to his subscribers, as well as to himself, to lay before them as briefly as possible, the results of the arrangements which he contemplated carrying into effect at the conclusion of the last volume;-more especially as a somewhat erroneous estimate of the cost and circulation of the Journal found admission into a late notice of the Indian Periodical Press, drawn up by the Editor of one of the morning papers. The Journal is not published, as there stated, by the Asiatic Society, but solely at the cost and responsibility of the Secretary, who was Editor of it before he enjoyed the honour of an election to that office. Since there never has been the least view to profit, either in the Gleanings or in the present work, there can be no object whatever in concealing any information respecting its publication; and it may be useful hereafter to find on record a note of the expences of printing, and the difficulties against which a Journal exclusively scientific has had to contend, as well as the advantages which it has enjoyed, in India at the present time. The following particulars have therefore been extracted from the accounts of the two years now terminated.

The amount of subscriptions to the Journal at one rupee per number, including two extra numbers, in 1832, was Rs. 51488
From this, deducting 20 per cent. commission paid to Messrs. Thacker and Co. for circulating it, 102811

There remained net subscriptions available, Rs. 411413
The Baptist Mission Press charged for printing and stitching 500 copies, Rs. 374210
And the 15 plates cost with printing, 4165

The result of the first year exhibits a sufficient accordance between outlay and return. Of the amount subscribed however, only Rs. 3786 13 have been collected up to the present time, so that in fact there was a deficit of Rs. 3922.

The alterations which the Editor proposed and completed for the second year were :-

1. The saving of nearly half of the commission paid for the mere circulation of the work (without responsibility), by undertaking that duty with the aid of his establishment as Secretary of the Asiatic So. ciety;
2. As a return for this favor, he proposed circulating the Journal gratis to such of the paying members as should express a desire to take it in.

The effect of this scheme has been as follows:
Fifty members of the Society have availed themselves of the privilege, which has made a deduction to the same amount from the monthly receipts. The number of copies circulated, including those sent to subscribers and societies in Europe, is about 450.

The number of paying subscribers on the list, is 320 , which at 1 R . per month, (including one extra number of Buchanan,) would give Rs. 4480.

> The expenses of printing 500 copies, of 670 pages, at $4-5$ per page, may be stated at Rs. 2,890 144 pages of Buchanan, at $4-8$ per page,........ 648
> Covers, table work, \&c. charged extra, 250
> 40 pages of Appendix, at 5 Rs.................. . . 200
> 28 plates (18 lithographs, 10 engravings*),.... 480
> Establishment for circulation, 600

Leaving a loss on the year of Rs. 588 , or nearly as much as the subscriptions of the members exempted from paying.

But it must be mentioned, and mentioned with a degree of disappointment which is almost disheartening, that of the flattering list of sub-

[^0]scribers above given, 70 have not paid any part of the year's subscription, and as many more are still in arrears; so that a balance of Rs. 1321-8 still remains to be collected. The actual state of the concern is therefore by no means so favorable as could be wished, for it leaves the Editor out of pocket upwards of 2000 Rs . as the reward of his labour for two years ! B oy $\ddagger n w i l l$ not for a moment suppose that the balances outstanding are not recoverable : on the contrary the principal difficulty lies in the distance, and the supposed want of a mode of remittance.-Many subscribers are not aware, that letters containing hoondees for the amount may be transmitted post free to the Editor.

It will be remembered, that the Bengal Government were pleased to bestow the privilege of free postage on the Gleanings and on the Journal, on condition of the publication of the late Dr. Buchanan's Statistical Reports. Under the impression (justly formed) of a corresponding increase of circulation, consequent upon this liberal boon, it was resolved not to incorporate these records in detached notices in the Journal, nor to diminish from its original matter*, but to publish them as a separate work; and one volume has accordingly been completed, containing 356 pages, which at 4.8 per page have cost Rs. 1,602

And a reprint of the first 108 pages, which became necessary on the subsequent extension of the edition from 300 to 500 copies,

$$
\text { Total, Rs. } \quad 1818
$$

This expence has been incurred therefore on account of Government, in return for the postage saved, not to the work, but to the subscribers of the Journal. On the completion of the first volume of Buchanan, a second extra volume of an official nature on the Monetary System was commenced, of which 50 pages have been printed with 3 plates, being in fact an expence of more than 300 rupees not included in the above estimate. The Government meantime placed the remaining volumes of Buchanan in the Editor's hands, with an intimation of its "desire that the printing of these records should be continued." It was therefore with no small feeling of mortification that

[^1]the Editor perused the following letter, announcing that the privilege of free postage should cease from June next, especially after having been honored, on an explanation of the nature of the work, with an extension of the same privilege to the Madras presidency, in addition to that formerly bestowed by the Governors of Bombay and Ceylon.

To JAMES PRINSEP, Esq.

Genl. Dept.
Editor of the Journal of the Asiatic Society,
Sir,
I am directed to inform you, that the Governor General in Council has resolved, that after six months the exemption from postage, which is now enjoyed by the Journal of the Asiatic Society, shall be discontinued.

I have the honor to be, Sir,

> Your most obedient servant,
> G. A. BUSHBY,

Council Chamber, 2nd Dec. 1833.

Offg. Sec. to Gort.

It may reasonably be feared that many subscribers at distant stations may be unable to continue their support to the work, when its cost shall be enhanced by postage ; but (should it be impossible, on a proper and respectful representation of the circumstances, to avert the imposition of postage) every means will be taken of lessening the burthen by sending the monthly numbers by the bangy instead of the regular dâk.

On the contents of a volume which has already been perused by nearly all to whom it circulates, it would have been obviously needless to make any remark, were it not desirable to prove that the favors hitherto conferred upon the work by the Government of the country had not been altogether misapplied.

Independently of the volume of Dinajpur Statistics, which forms a model for the use of public officers engaged in collecting similar information, the Gleanings and the Journal have been the means of bringing to notice many of the mineral resources of our vast Indian Empire, and of leading to fresh discoveries by the announcement of what had already been found : coal may be adduced as an example, -of which twenty or more different localities have been brought to our knowledge through its pages, where only two were before known. Of the native mineral productions, iron, copper, gold, \&c. :-Of the native arts and manufactures, salt, nitre, turpentine, dyes, mills, \&c. numerous original ac-
counts have been inserted : catalogues of woods, medicinal plants and drugs : experiments on materials, wood, iron, cement;-Statistical reports;-descriptions of newly explored countries and people :-in fact, it would be difficult to open a number of the Journal without finding some information which must possess value in the eyes of a government. Contributions of a more exclusively scientific nature have, in the mean time, continued to multiply, and the objects pointed out as desiderata at home in the geography, meteorology, geology, and natural history of this country, are in the course of rapid and systematic elucidation. So numerous for instance have been the registers of the weather offered for publication, that space could only be found for abstracts of many. There has hardly been time for the collection of materials regarding the tides of the Indian coasts, suggested in the Rev. Professor Whewell's circular, (inserted in page 151,) but the attention of those who have opportunities of eliciting the information required, is again solicited to this object.

As a proof of the benefit conferred on science by the free and extensive circulation of a periodical devoted to such objects, the Editor feels pride in alluding to the ardour which his plates of ancient coins have inspired in many active collectors, and above all to the reward bestowed ou himself by the munificence of General Ventura, the most successful pursuer of antiquarian research in the Panjab, who has presented to him all the coins and relics discovered on opening the celebrated Tope of Manikyala. They are now on their way to Calcutta.

That extracts and analyses of European science have not been more frequent must be attributed once more to want of space and want of leisure. The Editor would recommend all who seek for knowledge of the progress of science in Europe to procure a copy of the Reports of the British Association for 1832, in which they will find every branch discussed by the philosopher best able to give it illustration. To attempt to shorten those admirable essays would be mutilation rather than abridgment ; yet unfortunately most of them are too long for the pages of a monthly journal.

On the subject of orthography of native words, the Editor is driven to make one concession, for which he fears the learned Societies at home
will denounce him as an apostate to the system of their leader. Every communication, with hardly any exception, which comes for publication, adopts the Gilchristian mode of spelling, or that modification of it which has been ordered to be used in all Government records, surveys, \&c. An attempt has been made hitherto to conform the whole to Sir William Jones' method, but necessarily there have been continual omissions, and the contributors in most cases express themselves but ill pleased to see their words transformed into shapes but ill accordant with ordinary English pronunciation. The Editor has therefore resolved to adopt the middle course followed in Hamilton's Hindustan, namely, to print all Indian names and words in the ordinary roman type as they are usually written and pronounced, and to place in italics all such native terms and proper names, as are corrected, and spelt according to the classical standard of Sir William Jones : in many cases the latter may be inserted in brackets after the ordinary word.

Where contributors have occasion to illustrate their papers by plates, it will be a great convenience to the Editor to have the original drawings prepared of the same dimensions as the printed page of letter press, to sare the trouble and expence of reducing them.

The Editor will not allude in this place to the severe loss he has sustained in the death of some of the most able and constant supporters of his work, and the departure to Europe of others in the course of the past year; since he hopes that a more worthy channel will be found for the record of their meritorious labours for the cause of Science in India, in the Proceedings of the Asiatic Society, to which their names belong, and in which their reputation must ever be cherished with fond remembrance.

[^2]
LIST OF SUBSCRIBERS, 1833.

[The names marked with an asterisk have availed themselves of the privilege of taking the Journal gratis, as members of the Asiatic Society ; d, after a name, denotes deceased or discontinued.]

The Honorable the Court of Directors, (By the Secretary to Government, General Department, one copy.
*The Right Honorable Lord W. C. Bentince, Governor General, \&c. one copy.
*The Honorable Sir C. T. Metcalfe, Bart. Member of Council, one copy.
*The Honorable Sir E. Ryan, Knt. Chief Justice, oue copy.
*The Right Rey. Lord Bishop of Calcutta, one copy.
The Venerable Archdeacon Corrie, one copy.

Subscribers for twelve copies.
The Physical Class, Asiatic Socicty.
Subscribers for four copies.
Hyderabad Book Society.
Subscribers for two copies.
P. Andrew, Esq. Calcutta.

Major A. Irvine, Delhi.
J. J. Malvery, Esq. Bombay.

Subscribers for one copy.

Abercrombie, Lieut. W. Hazarecbagh. Agra Book Club.

* Anburey, Col. Sir Thos. Calcutta.

Artillery Book Club, Dum-Dum.
Atherton, H. Esq. Futtygurh.
*Avdall, J. Esq. Calcutta.
Baikie, Dr. Ootacammend.
Baker, Capt. H. C. England.
Baker, Lieut. W. E. Seharanpur.
Ballard, Geo. Esq. Calcutta.
Barlow, J. H. Esq. Bagundec.
Barrett, M. Esq. Calcutta.
Barrow, H. Esq. Ditto.
Batten, J. H. Esq.
Batten, G. M. Esq. Calcutta.
Beatson, Lieut.-Col. W. S. Ditto.
Beckett, J. O. Esq. Coel.
Bedford, Capt. J. Allahabad.
Bell, Dr. H. P. Calcutta.
Bengal Club, Ditto.
Benson, W. H. Esq. England.
*Benson, Major R. Ditto.
Betts, C. Esq.
Bird, W. W. Esq. Calcutta.
Blair, Major J. Barelly.
Blake, Capt. B. Cuttack.
Blake, H. C. Esq. Dhobalh, near Culnah.
Blechynden, A. I. Esq. Calcutta.
Boileau, Lieut. J. T. Agra.
Boileau, Lieut. A. H. E. Ditto.
Bombay Asiatic Society.
Boulderson, H. S. Esq. Seharanpur.
Boulderson, S. M. Esq. Azimgurh.
Boutrons, T. Esq. Purneah.
Bramley, Dr. M. J. Calcutta.

Brander, Dr. J. M. Cuttack.
Bridgman, J. H. Esq. Goruckporc.
Bridgman, Licut. P. Agra.

* Briggs, Col. J. Nagpore.

Brittridge, Capt. R. B. Barelly.
Brooke, W. A. Esq. d.
Browulow, C. Esq. Calcutta.
Brownc, Capt. W. Seharanpir.
Brown, Lt. E. J. Engineers, Allahabad.
Browne, G. F. Esq. Jounpore.
Bruce, W. Esq. Calcntta.

* Bryant, Col. Sir J. Head Quarters.
*Burke, W. A. Esq. Ditto.
*Burnes, Lieut. A. England.
* Burney, Major H. Ava.

Burt, Lieut. T. S. Allahabad.
Butter, Dr. D. Ghazipur.
Bushby, G. A. Esq. Calcutta.
Byrn, W. Esq. Ditto.
Calcutta Periodical Book Society.

* Calder, J. Esq. Calcutta.

Campbell, Dr. D. Mirzapore.
Campbell, D. A. Esq. Nipal.
Campbell, J. Esq. Cawnpore.
Campbell, Dr. Arch. Moulmayne.
Carey, Rev. Dr. W. Serampore.
Carr, W. Esq. Calcutta.
Carte, Dr. W. E. Mansi.
Casanova, Dr. J. Calcutta.
*Cautley, Licut. P. T. Seharanpur.
Chambers, R. G. Esq. Surat.
Cheek, Dr. G. N. Bancoorah.
Clarke, Dr. J. Calcutta.
Coignard, E. Esq. Junghipur.
Cole, R. Esq. Madras.
*Colvin, Major J. Delhi.
Colvin, A. Esg. d.
*Colvin, J. R. Esq. Calcutta.
Conolly, Lieut. E. B. Cawnpore.
Conoylaul Tagore, Baboo, Calcutta.
Coombs, Lieut.-Col. d.
Cope, Gunner, Meerut.
Cracroft, W. Esq. Dacca.
Crawfurd, W. Esq. Seharanpur.
Crommelin, Capt. A. Barrackpur.
*Csoma de Körör. Calcutta. Cullen, Col. W. Madras.
Cunningham, Lieut. J. D. Rajmahal.
Cunningham, Lieut. A. Berhampur.
Curtis, J. Esq. Calcutta.
Dalby, Lieut. G. M. Calcutta.
De Courcy, R. Esq. Kishnaghur. Delhi Book Society.
Deunis, Capt. G. G. Meerut.
Dickens, T. Esq. d.
Dixon, Capt. C. G. Ajmere.
Dobbs, A. Esq. Calcutta.
Dorin, J. A. Esq. Ditto.
Douglas, H. Esq. Patna.
Drummond, Capt. J. G. Allahabad.
Dubois, Col. A. Lucknow.
Duff, Rev. A. Calcutta.
Dunlop, Lieut-Col. W. Cawnpore.
Durand, Lieut. H. M. Meerut.
Eckford, Dr. J. Nussirabad.
Edgeworth, M. P. Esq. Umbala.
Editor Bombay Liter. Gaz.
Editor Calcutta Courier.
Editor Calcutta Liter. Gaz.
Editor Colombo Journal, Ceylon.
*Fgerton, C. C. Esq. Calcutta.
Eisdale, D. A. Esq. Poona. Ellerton, J. F. Esq. d.
Elliot, J. B. Esq. Patna.
Elliot, W. B. Esq. Bauleah.
Erskine, D. Esq. Elambazar.
Evans, Dr. Geo. Calcutta.
Everest, Rev. R. Delhi.
*Ewer, W. Esq. Allahabad.
Fagan, Lieut. G. H. Cawnpore.
Fagan, Brig. C. S., C. B., Neemuch.
Falconer, Dr. H. Seharanpur.
Fane, W. Esq. Allahabad.
Ferguson, W. F. Calcutta.
Fiddes, Col. T. Muttra.
Fisher, Lieut. T. Kachar.
Fitzgerald, Capt. W. R. Calcutta.
Forbes, Capt. W. N. Ditto.
Fraser, H. Esq. (Senr.) Delhi.
Fraser, A. Esq. Ditto.
Fraser, C. S. Esq. Saugor.
Frith, Lieut.-Col. W. H. L. Dum Dum.
Garden, Dr. A. Calcutta.
Gardner, Col. W. L. Lucknow.
Gerard, Capt. A. Hansi.
Gerard, Capt. P. Subathu.
Gerard, Dr. J. Ditto.
Gilchrist, Dr. W. Vizianagaram.
*Gordon, G. J. Esq. Calcutta.
Gorton, W. Esq. Benares.
Governor (His Exc. the) of Ceylon.
Gowan, Capt. E. P. Calcutta.
Grœme, H. S. Esq. d.
Graham, J. Esq. Calcutta.
Grant, J. W. Esq. Hurripaul.
Grant, Lieut. C. E. d.
Grant, Capt. W. Benares.
Grant, J. Esq. Calcutta.
Grey, E. Esq. Calcutta.
Greenlaw, C. B. Esq. Ditto.
Gubbins, C. Esq. Delhi.
Hall, Lieut. J. H. Kalladghee.
Hamilton, H. C. Esq. Bhagulpur.
Harding, Bea. Esq. Calcutta.
*Hare, D. Esq. Ditto.
Harris, F. Esq. Ditto.
Hart, Dr. T. B. Saugor.
Henderson, Dr. J. Agra.
*Herbert, Capt. J. D. d.
Hodges, Lieut. A. Sunderbunds.
Hodgson, B. H. Esq. Nipal.
Hodgson, B. Esq. Kishnaghur.
Holcroft, V. Esq. d.
Homfray, J. Esq. Care of Messrs. Jessop
and Co.
Horse Brigade, Artillery, Meerut.
Howrah Dock Company, Calcutta.
Howstoun, R. Esq. Backergunge.
Huddleston, Lieut. H. Goruckpur.
Hunter, R. Esq. Púrí.
Hunter, J. Esq. d.
Hutchinson, Major G. Calcutta.
Hutchinson, Capt. F. Bombay.
Hutton, Lieut. T. Neemuch.
Inglis, Esq. China.
India Gaz. Press, Calcutta.
Inverarity, Lieut. J. Engineers, Madras.
Jackson, Dr. A. R. Calcutta.
Jeffreys, Dr. J. Ditto.
Jenkins, Capt. F. Ditto.
Jervis, Capt. Thos. Ootacamund.
Joues, Capt. N. Cawnpore.
Jopp, Capt. J. Poona.
Kali Kissen, Moharaja, Bahadoor.
Kean, Dr. Arch. Mursbedabad.
Kennedy, Lieut. T. Bombay. d.
Kerr, A. J. Esq. Malacea.
King, Dr. Geo. Patna.
Kassipersaud Ghosa, Baboo, Calcutta.
Kyd, J. Esq. Ditto.
Laidly, J. W. Esq. Beerbhoom.
Lamb, G. Esq. Dacca.
Lambert, W. Esq. Allahabad.
Langstaff, Dr. J. Calcutta.
Laughton, Dr. R. d^{2}.
Law, J. S. Esq. Surat.
Lindsey, Dr. A. K. Chunar.
Lindsay, Col. A. Dum Dum.
Lloyd, Capt. Rich. Calcutta.
Lockett, Col. A. Ajmere.
Logan, Geo. Esq. Seharanpur.
Login, J. S. Esq. Hyderabad.

Louis, J. Esq. Bouleah. d. Louis, T. Esq. Moradabad.
Lowther, W. Esq. d.
Lowther, R. Esq. Allahabad.
Lushington, G. T. Esq. Bhurtpoor.
Macdonald, Lieut. R. Saugor.
Macdowal, W. Esq. Rungpur.
Macfarlan, D. Esq. Calcutta.
Macgregor, D. W. L. Loodianah.
MacCheyne, W. O. H. Esq. Nusseerabad.
Muckenzie, Lieut. J. 8th L. I. Cawnpore.
Maclennan, Dr. J. Bombay.
Maclcod, D. A. Esq. Assam.d.
Macleod, Col. D. Murshedabad.

* Macnaghten, W. H. Esq. Calcutta.

Macpherson, Lieut. S. Hydcrabad.
MacRitchie, J. Esq. Bancurah.
Madras Club.
Mainwaring, T. Esq. d.
Malcolmson, Dr. I. N. Nagpore.
Mannuk, M. M. Esq. Calcutta.
Manson, Capt. J. Bittour.
Marshall, Capt. G. T. Calcutta.
Marshman, Kev. Dr. J. Serampore.
Martin, Lieut. R. Delhi.

* Martin, J. R. Esq. Calcutta.

Martin, C. R Esq. Ditto.
Martin, W. B. Esq. Indore.
Master, W. Esq. Calcutta.

* Mendez, F. Esq. Ditto.

Mess Library, 11 th Light Dragoons.
Miles, Lt. R. H. Futtyghur.
*Mill, Rev. Principal Dr. W. H.
Milner, Captain E. T. Almorah.
Military Board, Calcutta.
Military Library Society, Mhow.
Montgomery, Dr. W. Penang.
Montrion, Lt. C. Calcutta.
Moore, Capt. J. A. Hyderabad.
Morgan, R. W. Esq. Tirhoot.
Morley, C. Esq. Calcutta.
Morris, J. C. Esq. for Mad. Lib. Socy. Madras.
Morris, J. C. Esq. Arrah.
Morse, Major A. Bombay.
Mouatt, Lt. James A. Kurnal.
Mouatt, Dr. J. A. Pres. Bangalore B. Socy. Bangalore.
Muller, A. Esq. Calcutta.
Murray, Capt. H. R. Noacolly.
Muzzufferpore Book Club, Tirhoot.
Napier, Lieut. R. J. Seharanpur.
Nash, Dr. D. W. Hyderabad.
Nicholson, Capt. M. Jabalpur.
'Nicholson, S. Esq. Calcutta.
Nisbet, W. Esq. d.
Noton, B. Esq. England.
Nussirabad Book Society.
Officers, 73rd Regt. N. I. Benares.

- H. M. 16th, Chinsurah.
- 40th Regt. N. I. Allyghur.
- 12th Regt. N. I. Lucknow.

Oliver, Major T. Nussirabad.
Oliver, Hon'ble W. Madras.
Ommaney, Lieut. E. L. Dacca.

Ommaney, M. C. Esq. Sangor.
Ostell, T. Esq. Calcutta.
Pakenham, T. Esq. Calcutta.
Parental Ac. Institution, Ditto.
Parker, H. M. Esq. Ditto.
Patrick, W. Esq. Fort Gloster.
Patton, Capt. J. W. d.

* Pearson, Dr. J. T. Calcutta.
* Pemberton, Capt. R. B. on Survey.

Persidh Narair Sing, Baboo, Benares.
Piddington, H. Esq. Chonadinga Factory.
Pigg, T. Esq. Calcutta.
Playfair, Dr. Geo. Meerut.
Plumb,J. R. Esq. Calcutta.
Poole, Col. E. Ditto.
Pratt, Geo. Esq. Purneah.
Presgrave, Major D. Sangor.
*Prinsep, H. T. Esq. Calcutta.
Prinsep, Miss, England.
*Prinsep, C. R. Esq. Ditto.
*Procter, Rev. T. Ditto.
Proprietors of the John Bull, Ditto.
Pyle, J. C. Esq. Futtyghur.
*Radhacaunt Deb, Baboo, Calcutta.
*Rancomul Sen, Baboo, Ditto.
Ramsay, Capt. W. H. Head Quarters.
Ranken, Dr. J. Delbi.
Rattray, R. H. Esq.
*Ravenshaw, E. C. Esq.
Renny, Lieut. T. Agra.
Renney, D. C. Muttra.
Rhodes, D. W. Sylhet.

* Richy, Monsr. A. L. Calcutta.

Roberts, Major A. Ditto.
Robertson, T. C. Esq. Sylhet.
*Robison, C. K. Esq. Calcutta.
Rogers, Esq. Ditto.
Ross, A. Esq. Ditto.
*Ross, D. Esq. Ditto.
Ross, Capt. D. Gwalior.
Routh, W de H. Esq. Boolundshuhr.
Row, Dr. J. Bandah.
Royle, Dr. J. England.
Ruspini, Rev. W. Dinapur.
*Sage, Capt. W. Dinapur.
Sale, Lieut. T. H. Delhi.
Sanders, Capt. E. Cawnpur.
Sandy, T. E. Esq. Arrah.
Sandys, Rev. T. Calcutta.
Satchwell, Capt. J. Dinapur.
Saunders, Geo. Esq. Calcutta.
Saunders, J. O B. Esq. Coel.
Scott, D. Esq. Burdwan.
Seaton, Lieut. T. Jamalpur.
Sevestre, Robt. Esq. Calcutta.
Shaw. T. A. Esq. Chittagong.
Shore, Hon'ble F. J. Futtyghur,
Shortreed, Lieut. R. Poona.
Siddons, Lieut. H. Berhampore.
Simmonds, Capt. J. H. d.
Sleeman, Capt. W. H. Jabalpur.
Sloane, W. Esq. Tirhoot.
Smith, T. P. Esq. Baitool.

Smith, Samuel and Co. Calcutta. Smith, Capt. E. Ditto. Smith, Lieut. J. T. Musulipatam. Smyth, Capt. WF. H. Calcutta. Smyttan, Dr. Geo. Bombay. Society Nat. His. Mauritius. Southby, Capt. F. S. Calcutta. Sparks, Capt. J. P. Ghazipur. Speed, D. W. H. Esq. Calcutta. Spiers, A. Esq. Allahabad. Spilsbury, Dr. G. G. Jabalpur. Spry, Dr. H. H. Saugor.
Stacy, Lieut.-Col. L. R. Nussirabad.
Stacy, S. P. Esq. Calcutta. Stainforth, F. Esq. Goruckpur. Stephenson, J. Esq. Patna. Stevenson, Dr. W. Jun. Calcutta.

* Stirling, E. Esq. Allyghur.

Strokes, Dr. J. Hamirpur.

* Strong, F. P. Esq. Calcutta.

Sutherland, Capt. E. Calcutta.
Sutherland, Hon'ble J. Bombay.
Sweetenham, H. Esq. Futtyghur.
Swiney, Dr. J. Kurnal.

* Swinton, G. Esq. England.

Sylhet Book Club.
Tanner, Capt. W. F. H. Monghyr.
Taylor, T. G. Esq. H. C. Astronomer, Madras.
Tayler, J. Esq. Dacca.
Telfair, C. Esq. Mauritius d.
Terraneau, Capt. W. H. Sylhet.
Thomas, C. Esq. Singapore.
Thomas, Dr. W. Barrackpur.
Thomas, E. F. Esq. Kemaon.
*Thomason, J. Esq. Azimgurh.
Thompson, Capt. G. Hazareebagh.
Thompson, Capt. J. Calcutta.
Thoresby, Capt. C. Berhampur.
Tickell, Col. R. Barrackpoor.

Tierney, M. J. Esq. d.
Trade Association, Calcutta.
Trail, G. W. Esq. Kemaon.
Tremenherlt, Lieut. G. B. Delhi.
*Trevelyan, C. E. Esq. Calcutta.
*Trotter, R. Esq. Gyah.
*Troyer, Capt. A. Calcutta.
Turner, T. J. Esq. Seharanpur.
Twemlow, Capt. G. Arungabad.
*Twining, W. Esq. Calcutta.
*Tytler, J. Esq. Ditto.
Udny, C. G. Esq. Calcutta.
Vicary, Lieut. N. Meerut.
*Wade, Capt. C. M. Loodianah. Walters, H. Esq. Chittagong.
*Wallich, N. Esq. Calcutta.
Warner, Capt. J. H. Bauleah.
*Watson, Col. T. C. Dacca.
Watt, A. Esq. Singapur.
Waugh, Lieut. A. H. Agra. Webb, L. W. Esq. Surat.
Wells, F. O. Esq Monghyr.
Western, Lieut. J. R. Midnapur.
White, Rev. E. Cawnpore.
Wilcox, Capt. R. Gt. Trig. Surv.
Wilkinson, W. Esq. Pooree.
Wilkinson, J. E. Esq. d.
Winfield, Capt. J. S. Bhopal.
*Wilson, H. H. Esq. England.
Wise, Dr. T. A. Hoogly.
Wise, J. P. Esq. Dacca.
*Withers, Rev. G. N. Calcutta.
Wood, Dr. Arthur, Simlah.
Woodburn, Dr. D. Shirghati.
Woollaston, M. W. Esq. Calcutta.
Zeigler, L. Esq. Setapur.

CONTENTS

No. 13.-JANUARY.
Page.
I.-Continuation of the Route of Lieut. A. Burnes and Dr. Gerard, from Péshá- war to Bokhára. 1
II.-On the Manufacture of Saltpetre, as practised by the Natives of Tirhút. By Mr. J. Stevenson, Supt. H. C.'s Saltpetre Factories in Behar. 23
III.-On the Greek Coins in the Cabinet of the Asiatic Society. By James Prinsep, Secretary. 27
IV.-Eclipses of Jupiter's Satellites. 41
V.-A method of preparing Strychnia. By J. T. Pearson, Esq. Assistant Surgeon. 42
VI.-Proceedings of the Asiatic Society. 43
VII.-Miscellaneous.
1.-Hot-spring at Pachete. By C. Betts, Esq... 46
2.-Extraordinary Banyan Tree at Kulow Nagty Hally, near Bhuoma Naik Droog, in the territory of Mysore.. 47
3.-Discovery of the Silhet Coal Mines.. ib.
4.-Questions proposed by the Burmese Heir Apparent. $i b$.
VIII.-Progress of Astronomical Science. 48
IX.-Meteorological Register. 56
No. 14.-FEBRUARY.
I.-Note on the Origin of the Kala-Chakra and Adi-Buddha Systems. By Mr. Alexander Csoma de Körös. 57
II.-Journal of a March from Ava to Kendat, "on the Khyendwen Rlver, perform- ed in 1831, by D. Richardson, Esq. Assistant Surgeon of the Madras Esta- blishment, under the orders of Major H. Burney, the Resident at Ava. 59
III.-Trisection of an Angle. By Lieut. Nasmyth Morrieson, W. S. 71
IV.-Short Description of the Mines of Precious Stones, in the District of Kyat- pyen, in the Kingdom of Ava. 75
V.-Note on Saline Deposits in Hydrabad. By Assistant Surgeon J. Malcolm- son, Madras European Regiment. 77
VI.-An Experimental Inquiry into the Means employed by the Natives of Bengal for making Ice. By T. A. Wise, Esq. M. D. 80
VII.-Proceedings of the Asiatic Society.. 91
VIII.-Systematically arranged Catalogue of the Mammalia and Birds belonging to the Museum of the Asiatic Society, Calcutta. By Dr. W. Warlow. 96
IX.-European Notices of Indian Natural History.
1.-The Dugong. 100
2.-Nipal Specimens. 101
X.-Meteorological Table for February 104
Page.
No. 15.-MARCH.
I.-On the Restoration of the Ancient Canals in the Delhi Territory. By Major Colvin, Engineers.. 105
II.-Abstracts of Observations of the Temperature, Pressure, and Hygrometri- cal State of the Air at Nasirabad. By Major T. Oliver... 128
III.-Determination of the Constant of Expansion of the Standard 10 -fect Iron Bar of the great Trigonometrical Survey of India; and Expansions of Gold, Silver, and Copper by the same Apparatus. By James Prinsep... 130
IV.-Coutinuation of Dr. Gerard's Route with Lieut. Burnes, from Boklára to Meshid... 143
V.-Proceedings of the Asiatic Society. 149
Whewell's Desiderata on the subject of Tides.. 151
VI.—Madras Literary Society. 154
VII.-Miscellaneous.
1.-Indian Botany.. 156
2.-Indian Geology. 157
3.-Indian Arts and Manufactures. 158
4.-Note on Lieut. Burt's Instrument for trisecting Angles. 159
VIII.-Meteorological Register for March. 160
No. 16.-APRIL.
I.-Account of the Jain Temples on Mount Abú in Guzerát. By Lieut. Burnes, Bombay Army... 161
II.-List of Indian Woods collected by N. Wallich, M. D., F. R. S., Correspond- ing Member of the Royal Institute of France, and the Academy of Sciences at Berlin, \&c. and of the Society of Arts of London; Superintendent of the Botanic Garden at Calcutta... 167
III.-Table for Ascertaining the Heights of Mountains from the boiling point of Water. By James Prinsep, Sec., \&c... 194
IV.-Translation of a Tibetan Passport, dated A. D. 1688. By M. Alex. Csoma de Körös. 201
V.-Proceedings of the Asiatic Society. 203
VI.-Miscellaneous.
1.-Indian Meteorology. 206
2.-Indian Arts and Manufactures. 209
3.-Phenomenon of the Japanese Mirror. 214
VII.-Meteorological Register for April. 216
No. 17.-MAY.
I.-Origin and Classification of the Military Tribes of Nipal. By B. H. Hodg- son, Esq.. 217
II.-Description of Bokhára. By Lieut. A. Burnes, Bombay Army, Assistant Resident at Kutch. 224
III.-On the Climate of Nagpúr. By W. Geddes, Surgeon, Mad. Eur. Reg... 239
IV.-Table shewing the Rise of Spring Tides in Bombay Harbour, during night and day, for the year 1832, communicated by Ben. Noton, Esq... 247
V.-On the Native Manufacture of Turpentine. 248
VI.-Description of a Sun Dial in the Court of the Moti Masjid, in the Fort of Agra. By Capt. J. T. Boileau, Engineers... 251
VII.-Catalogue of the most remarkable Celestial Objects visible in the Horizon of Calcutta, arranged in order of Right Ascension. 252
VIII.-Description of a Compensation Barometer, and Observations on Wet Barometers. By J. Prinsep, Sec., \&c... 258
Page.
IX.-Proceedings of the Asiatic Society. 262
X.-Miscellaneous.
1.-Rustic Bridge. 267
2.-Remarks on the Paper on the Trisection of an Angle in No. 14. of the "Journal of the Asiatic Society.". 268
3.-New Patent Improved Piano-Forte. 269
4.-Specific Gravity of Metallic Alloys. 270
5.-Proportion of Recent and Fossil Shells. $i b$.
6.-Table of the Lengths in British Miles of the Degrees of Latitude and Longitude from 0° to 30°, with the Areas bounded by them in Square Miles... 271
XI.-Meteorological Register for May. 272
No. 18.-JUNE.
1.-On the Marriage Rites and Usages of the Játs of Bharatpur. By G. T. Lushington, C. S. 273
II.-Report on the Geology of Hyderabad. By H. H. Voysey, Esq. Surgeon and Geologist to the Great Trigonometrical Survey of India, 1819. 298
III.-On the reputed Descendants of Alexander the Great, in the Valley of the Oxus. By Lieut. Alexander Burnes, Bombay Army. 305
IV.-On the "Topes" and Grecian Remains in Panjáb. By Lieut. Burnes, Bom- bay Army. 308
V.-Note on Lieutenant Burnes' Collection of Ancient Coins. By James Prinsep, Sec., \&c. 310
VI.-Astronomical Observations at Barelly. By H. S. Boulderson, Esq. 318
VII.-Notice of a Native Sulphate oì Alumina from the Aluminous Rocks of Nipal. By J. Stevenson, Superintendent H. C. Saltpetre Factories in Behar. 321
VIII.-Notice of a Native Sulphate of Iron from the Hills of Behar, and usedby Native Dyers of Patna. By Ditto.321
IX.-Notice of Analysis of the Ashes of four Indian Plants. By Ditto. 322
X.-Proceedings of the Asiatic Society. 323
XI.-Miscellaneous.
Synopsis of the Winds, Weather, Currents, \&c, between Bombay and Suez, throughout the Year. By Capt. J. P. Sanders, Bombay. 325
XII.-Meteorological Register for June. 328
No. 19.-JULY.
I.-The Birth of Umá-a Legend of Himaláya-by Cálidása. 329
II.-Description of the Pan-chaki or Native Water-mill. 359
III.-Description of the Salt Works at Panchpadder, Mewár. By Lieut. A. Burnes, Bombay Army. 365
IV.-Proceedings of the Asiatic Society. 367
V.-Report of the Committee appointed on the 27th March, 1833, to consider on the expediency of recommending to the Government the continuance of the Boring Experiment. 369
VI.-Miscellaneous. 374
2.-The Royal Society. 375
3.-Discovery of a Bed of Fossil (Marine?) Shells on the Table Land of Central India. 376
4.-Indian Zoology. 377
VII.-Analysis of Books.-Taylor's Astronomical Observation at Madras. 380
Page.
VIII.-Meteorological Table kept at Bancoora, for the year 1832, by John Mac- Ritchie, Esq. 383
IX.-Meteorological Register for July. 384
No. 20.-AUGUST.
I.-Origin of the Shákya race, translated from the $V(L a)$, or the 26 th, volume of the m Do class in the Kágyur, commencing on the 161st leaf. By M. Alex. Csoma de Körüs,.. 385
If.-Second Report on the Geology of Hyderabad. By H. W. Voysey, Esq. Surgeon and Geologist to the Trigonometrical Survey of India, dated Secan- derabad, the 28th June, 1820. 392
III.-Bactrian and Indo-Scythic Coins-continued. By James Prinsep, F. R. S. Sec. As. Soc. 405
IV.-Note on the Zoology of the 2nd Part of the Transactions of the Physical Class of the Asiatic Society of Bengal,. 417
V.-Note on the extraordinary Fall of the Barometer during the Gale of the 21st May last. By James Prinsep, Sec. \&c,.. 427
VI.-Climate of Singapúr,.. 428
VII.-Culminating stars observed with the Moon at Násirabád. By Lieut.-Col. Thomas Oliver, \&c., 432
VIII.-Chemical Analyses. By James Prinsep, See. \&c., 434
IX.-Earthquake, 438
X.-Meteorological Register, for August, 440
No. 21.-SEPTEMBER.
I.-An Inquiry into the Laws governing the two great powers, Attraction and Re. pulsion, as operating on the Aggregation and Combination of Atoms. By Julius Jeffreys, Esq. Bengal Medical Service, 441
II.-On Progressive Development in the cold-blooded Vertebrata. By D. W. Nash, Asst. Surgeon, Beng. Est. A. L. S. Corresp. Member S. A... 465
III.-Some Geological remarks made in the country between Mirzapár and Ságar, and from Ságar northwards to the Jamna. By the Rev. R. Everest, F. G. S. \&c., 475
IV.-On the Notice of Alum or Salajit of Nipal. By A. Campbell, Assistant Surgeon, \&c.. 482
V.-Defence of Lt. Burt's Trisection Instrument, 485
VI.-Computation of the Area of the Kingdoms and Principalities of India, 488
VII.-Miscellaneous.
1.-Importation of Ice from Boston, 491
2.-On the Action of various Lights upon the Retina. By Sir D. Brewster,. 494
3.-Substances contained in Opium, 495
3.-Death of Captain J. D. Herbert, ib.
VIII.-Meteorological Register for August, 496
No. 22.-OCTOBER.
1.-A visit to the Gold Mine at Batting Moring, and Summit of Mount Ophir, or
"Gunong Ledang," in the Malay Peninsula. By Lieut. J. T. Newbold, 23rd Regt. Mad. L. Inf. 497
II.-On the Nest of the Tailor Bird. By Lient. T. Hutton, 37 th Regt. N. Y. 502
III.-An Inquiry into the Laws governing the two great powers, Attraction andRepulsion, as operating in the Aggregation and Combination of Atoms. ByJulius Jeffreys, Esq. Bengal Med. Est.50^{8}
$\begin{array}{cccccc}\text { IV.-Iron Suspension } & \text { Bridge over the Beosi River, near Ságar, Central India. } \\ \text { Pl. XVI. } & \text {.. }\end{array}$
V.-Additional Note on the Climate of Nagpúr. By J. Prinsep, Sec. As. Soc. \&c., 542
VI.-Proceedings of the Asiatic Society, 546
VII.-Analysis of Books, 551
VIII.-Miscellaneous.
1.-Circular Instructions from the Geological Society, for the Collection of Geological Specimens, 557
2.-Mirrors of Fusible Alloy, 559
3.-Liverpool and Manchester Railway, ib.
IX.-Meteorological Register for Scptember, 560 No. 23.-NOVEMBER.

I.-On the Colossal Idols of Bamián. By Lieut. Alexander Burnes, Bombay						
Army,	..	\ldots	\ldots	\ldots	\ldots	\ldots

II.-Account of the Earthquake at Kathmandú. By A Campbell, Esq. Assistant
Surgeon, attached to the Residency,
III.-Census of the Population of the City and District of Murshedabad, taken in 1829 ,

567
IV.-List of Birds collected in the Jungles of Borabhum and Dholbhum. By Lieut. S. R. Tickell, 31st Regt. N. I.,569
V.-Note on the Fossil Bones discovered near Jabalpur. By J. Prinsep, Sec. As. Soc. 583
VI.-Report on a Collection of Objects of Natural History. By the Curator of the Museum of the Asiatic Society, 588
VII.-Note on the Genus Spiraculum. By J. T. Pcarson, Curator As. Soc. 590
VIII.-On the Kukumb ka Tel, or concrete Oil of the Wild Mangosteen 592
IX.-Note on the Coal discovered at Khyuk Phyú, in the Arracan District, 595
X.-Analysis of Books.-Transactions of the Batavian Society, 597
XI.-Miscellaneous.
1.-Register of the Temperature of Ghazipar. By the Rev. R. Everest, 604
2.-Note on the Salájit of Nipal, 605
3.-Summary Sketch of the Geology of India, 606
XII.-Meteorological Register for Nov. 1833, 608
No. 24.-DECEMBER.I.-A short Account of the Charak Púja Ceremonies, and Description of the Im-plements used. By Ram Comul Sén, Native Secretary, Asiatic Society. .. 609II.-Specimens of some Ornamental Forms of Persian Writing. By Mahá RájáKáli Kislıen Behadír, of Calcutta,613
III.-Description of an Indian Balance, called Tula. By the same, 615
IV.-Abstract of a Meteorological Journal, kept at Kotgarh, (Lat. $31^{\circ} 111^{\prime} 45^{\prime \prime}$N. Long. $77^{\circ} 27^{\prime} 49^{\prime \prime}$ E.) Subathfu, and the intermediate places in the Himá-laya mountains for 1819-20. By Captain Patrick Gerard, 9th Regt. B. N. I. 615
V.-Notes on the Specimens of the Kankar Formation, and on Fossil Bones col-lected on the Jamna. By Captain E. Smith, Bengal Engineers,622
VI.-Further particulars of the Earthquake in Nipal. By A. Campbell, Esq. Assistant Surgeon, attached to the Residency, 636
VII.-Note on the Fossil Palms and Shells lately discovered on the Table-land of Sagár in Central India. By H. H. Spry, Esq. Bengal Medical Service, 639
VIII.-Meteorological Register at Barelly in 1831. By H. S. Boulderson, Esq. 641
Page.
IX.-Proceedings of the Asiatic Society, 645
X.-Miscellaneous.
1.-Note on the Tailor Bird's Nest. By Lieut. Gifford. 648
2.-Note on the Inscription on the Hindu Coins. (Plate VIII. Fig. 15.) - 649
3.-Radiation in Valleys. ib.
4.-Bones in the Delta Alluvium. ib.
5.-Fall of Fish from the Sky. 650
6.-Fossil Shells near Herat. 652
7.-Cochineal. ib.
8.-Reply to the Questions of the Burmese Philosopher Prince, 653
9.-Cave of Secanderiah, near Tabriz. 658
XI.-Meteorological Register for December, 1833. 660

JOURNAL

$0 F$

THEASIATICSOCIETY.

No. 24.-December, 1833.

I.-A short Account of the Charak Pija Ceremonies, and a Description of the Implements used. By Ram Comul Sén, Native Secretary, Asiatic Society.

> [Read before the Asiatic Society, in 1829.]

In describing the instruments used in the Charak Sanyása presented by me for the Museum of the Asiatic Society, a short notice of the origin and practice of the ceremony appears to be necessary to illustrate the subject.

The word Charak is derived from Chakra or Charaka, which means a circle, and is used to signify moving or swinging in a circular direction ; Charak Sanyása implies leaving off worldly business, living abstemiously, observing austerities, for the propitiation of Siva. It is a festival improperly termed by mnny Charak Píja, perhaps from the notion that every ceremony observed by the Hindus of Bençal, is a puja or religious worship; and whether it be performed by a muchi or chandála, is considered as Hinduism, and the whole body of the Hindus are charged with the absurdity of the act.

There are two kinds of Sanyásas, called Siva Sanyása, and Dherma Sanyása; the first is celebrated in the month of Chaitra, and the second in Baisákha; the psople who practise these Sanyásas are termed Sanyasis, and the priest who presides in the ceremony is called a Gajaneyá brahman : the Charak festival is also called Gajana, (Gí or Grama, village ; jana, people,) being observed by the villagers. There are several ranks anıongst the Sanyísis, such as Múla or head; Dhula, or subordinate; Sain, or followers. The time occupied by the Charak Sanyása is a whole month, and that of the Dherma is a fortnight ; during this time the Sanyásis live abstemiously, and observe various ceremonies to be noticed below.

This act is performed by the Sudra class only, and generally by the lowest castes and most dissipated characters; some of them consider it as an act of piety and religion, in commemoration of the austerities performed by Vana Raja, a king and Daitya, who by acts of self-torture and denial obtained the special favour of Maha'deva, and who first introduced the festival; but the greatest number engage in it as a lucrative exhibition, or from a desire to acquire a character for courage in the opinion of their friends. In some cases, the rite is compulsory : the parents make a vow to Siva, when involved in trouble and disasters, that their children shall perform Sanyásas, for a certain number of years, which the sons must fulfil.

The form and manner of Sanyásas varies : the original ceremonies consisted of,

1. Phala Sanyúsa, playing with fruits.
2. Phula Sanyása, do. flowers.
3. Nila Sanyása, worshipping Nilavati, a goddess.
4. Jhula Sanyása, hanging, and
5. Charak, swinging. These lave been multiplied, and additions have been introduced by the people according to their fancy.

The original rules have mostly fallen into disuse, and new ones have been substituted, as convenience required. The time of Sanyása has been reduced from 30 days to $15,8,4$, and 2 , and in some cases only one day is taken. The ceremony which was called an act of piety, is converted into an occasion of dissipation, drinking, gambling, and acts of immorality.

The following are the ceremonies at present in practice :

1. Phala Bhánga and K'ánta Sanyása, or falling upon the branches of prickly plants, spread on the ground, collecting them, as well as fruits, and living solely upon fruits: the Sanyísis go in company, and climb upon date and cocoanut trees, and collect fruits; when they come back to the place of Siva, with the fruits so collected, they throw and distribute the same; they also receive presents of fruits. Barren women resort to the place, on the occasion, and spread cloths, on which if by accident a fruit falls, they receive it with joy as an omen of their becoming pregnant through the favour of Siva; at the same season, the Múla Sanyási with his deputy goes into a forest, a burial place, or on the bank of river, \&c. and there performs the worship of Yama (king of deatl), and presents, as offerings to the evil spirits, boiled rice and reasted fish.

Pátí Sanyísa.-Falling from a scaffold erected before Sıva, upon a row of Batí or knives. It is called Háta Sanáysa and Gháti

Sanyása, because the scaffold is erected in a market place, and on the bank of a river; afterwards when the Sanyásis return to the temple of Siva, they lie on their backs, upon the bare ground, in a row, close to each other, and the Gajanaya Brahman passes over them, treading upon their breasts.

Phúla Sanyása.-Collecting and playing with fuel; which they often procure by plundering gardens, and carrying off railings, loose doors, window frames, \&c. They then make a large bonfire in the evening, and jump and walk over the flame, and play with the burnt charcoal, throwing the same upon one another ; this is also called Aguna Sanyása.

Nila Sanyaisa-is the worship of Nilava'ti, a wife of Siva: the Sanyćsis visit Kálighát or temples of Sacti and Siva, where they pierce their sides, tongues, and the skins of their foreheads. This is called Bána Phorá, and on the occasion they collect presents and gifts from the spectators, who far from encouraging these self-tortures, pay them something to get rid of the sight of their bleeding limbs.

Jhúla Sanyása,-is climbing upon a scaffold, hanging with the head downward, and making a fire below. The fire is fed with the powder of Indian pitch.

Charak.-Eating Chehatu or bran, and swinging on the Charak Gaich or post, erected for the purpose. Among these Sanyisis there are several other ceremonies of note, some of which must be noticed here : Khátuni, shaking and turning the head, rolling about the shrine of Siva, beating the forehead, sitting up all night, and singing Tarja, or songs addressed to Siva; sometimes, but not always, in his praise. Phúla lá dana, extracting or receiving the flowers laid upon the Linga, which they think fall down at their solicitation ; and prayers to the god, who is pleased to throw them down as a sign of affirmation or negation to the question made to him by the Múla Sanyasi, or the priest for himself or on behalf of his friends. If the flower does not come down after a certain time, it is then supposed that the god is not propitiated, and the Dcyule, (proprietor,) Mandala, (agent,) the Múla, (head,) and other Sanyisis, and sometimes the priest himself, are tied up by the hands, and suspended to the verandah, all round the shrine of Siva, while the Sanyasis redouble their Khatíni before the idol, and the drummer beats his drum with all strength; the $S a n y d s i s$ and others remain suspended from off the ground till the flowers fall. The flowers are at first laid upon one another, and then placed upon the top of the Linga, which is oiled, and is consequently slippery : water is thrown upon it by drops, which assists to wash off the flowers, and
when it is obstinate, some person on the part of the priest, contrives to knock it off with a stick unperceived.
Description of the Instruments used in the Charak, of which Specimens are deposited in the Museum and numbered accordingly.
The Vetrasana is an instrument made of ratan, No. 1: it means a seat of ratan, it is the staff of the Sanyfsi, a number of ratan folded in the middle and tied up together, lcaving a few inches open in the lower part, in an oval form, the upper part is kept loose. Its use is various-it is a sacred ensign of authority, which must be respected on particular occasions by the Sanyasis, who rattle it as their musical instrument, iu their procession ; it is made a broom for cleaning the place of Suma, where the use of common broom is forbidden during the Charak. It scrrcs as a weapon, with which they fight, or beat down the bundle of thorns used in the Kanta Sanyása upon which they fall; they use it in playing with the burnt charcoal in Phula Sanyasa; it is used as ropes laid under the pot or bag No. 2, in the Pat Sanyasa. When any dispute or difference arises between the priest and Samyasis, or when the latter in their procession meet with another party, they lay down the Vetrasana across the road and the entrance to the house of Siva, and the party against whom it is laid down must instantly stop; it is a sacred bar which they must not pass over without violating the law of Charak, and committing a sin which would disqualify them from becoming Sanyásis again. They are finally allowed to pass only in compliance with certain conditions; and certain questions relative to Siva, delivered in verses, called Tarja, must be likewise answered before the new comers are allowed to pass, and beat their drum, or do any business.

Sutasana, or a cord of twisted thread, No. 3 ; it is in two pieces, which they pass beneath the skin of the sides, arms and thighs; the ends are held by two Sanyásis or assistants, whilst the man dances and passes to and fro. This purpose is also answered by \log-line, No. 4 , ratan, No. 5 , split bambú, No. 6.

Dasnakhi, (No. 7,) two pieces of iron rod, about 2 feet long: one end is pointed, which is passed into the sides, and the other is fork-shaped with prongs, each of which is called nakha, or nails, or finger-nail; the two pieces have often 10 nails, hence it is called dasa-nakhi or ten-fingered, but it is has often three prongs: the upper ends are flat, and laid upon one another, which serves as a bed for fire, or a lamp, made of cotton dipped in ghee; which is lighted, and upon this the powder of Indian pitch is from time to time thrown, so as to make a blaze, while the Sanyási dances as lie goes.

Bati, or knife, No. 8.-Eight in number, fixed upon two pieces of boards, in a leaning posture, placed upon a bag, No. 2, stuffed with straw. This bag is held by four persons, aloft from the ground, and two Sanydsis join their Betásana No. 1, and lay the same actoss, to render to the bag additional strength, and the Sanyásis fall upon it from the scaffold, No. 9.

Visesaya, No. 10, or nails to the number of 120 ; one end is flat, the other is pointed and sharp, these are run into the skin of the foreliead, upon both arms, and breast, in an ornamental form, close to each other, usually like the front or facing of a jacket. To the ends of the nails small beads or peas are attached or suspended like garlands hanging upon the forehead, and small pieces of talc are suspended by way of decoration.

fig. 5.

fig. 8.
fig. 9

The Tola or Indian Putance
T. B. Tessin lith.

Banas, Nos. 11, 12, 13, or arrows, iron rods of various sizes and thickness, used according to the strength and courage of the Sanyasis, whose tongues and sides are bored, and the rods are let in, which they often move about. When it is perforated, the tongue and the rod rest upon the lower jaw, or are held between lis teeth; if it be heavy, another person holds the ends.

Kupali, No. 14, is an iron rod or nail: the lower end is pointed, and is passed through the skin of the forchead, the manloolding it close to his nose, or a bandage is tied round the head, to prevent it from falling; a sinall lamp is attached to its top, which he burns on the day of Nila.

Charak kánta, No. 15, or swinging hooks. "The Charakí, or one who swings, is often of the bearer caste, and cther people, not Sanyásis, volunteer for this act, through the effect of liquor.

The skin of the back being drawn out, a perforation is made with a lancet, No. 16, on each side of the back-bone, and the hooks, No. 15, are let in; the twine attached to the hooks is tied to the rope, suspended to the Charaí Gácha, No. 17. If the skin of the Sanyasi is thin, or he is weak, a bandage of cloth is tied round his chest, to prevent the hooks from giving way, as when they break the Sanyasi falls, and is generally killed; the standers 'y also are sometimes severely hurt.

No. 18, 19, 20 and 21, Belkars, or lancets of various sizes and thickness: with these the skin is bored. These are notkept by the Sanyásis, but procured from certain kumars (blacksmiths), who attend the place where the Sanyasis meet, and receive a certain fee, which varies from 2 annas to 2 rupees for each subject. The lancets are of various sizes, and a number is always brought by the operator.

Nagapasa, No. 22, two long pieces of iron, with a suake head, hooded top; two of these are run into the neck and back of the head, and brought down to the waist ; each lias two borings at least, one on the head skin and one on the back. The Sanyasi who can submit to this torture is considered a great hero, and when two similar ones are put in, he cannot turn or bend his body without breaking the skin through which they are bored.

There is also a head piece, No. 23, made of iron put upon the head ; it has 3 to 5 pieces fixed to it like the lioods of serpents.

Charak Gách, No. 17, or a post, commonly of saul wood, for swinging : it is from 29 to 30 feet long, fixed into the ground, the upper part has a notch, or socket, called Mocha, B ; in which a movable pivot is let in, called Khakuyl. On this, a cross piece made of bamhús 5 to 10 in number is tied up together, and placed across the Khakíyt; to both ends of the cross thick ropes are suspended, one of which is tied to the hook, No. 15, and on which the Charaki swings.

II.-Specimens of some Ornamental Forms of Persian Writing. By Mahá Rájá Káli Kishen Behadúr, of Calcutta.

The accompanying figures, representing some beautiful poetical inventions of the latest authors, are extracted and translated from a Persian book called "Mujmua-us-sanáyá," (or Collection of Arts,) com. piled by Nizám-ud-Dín Aifmed, son of Muhammed Sánif, in the year 1060, Hejri.

Fig. 1. (Plate xxi.) أ أ Cofmáquíb, or anagram that retains the same meaning, even when it is read in various directions.

In this, the central (m) is the first letter of every hemistich. The reading will run equally well by beginning first from, towards B, thence continuing towards A , and from A returning to $;$; then back again from, to A; from A to C; and back again to ; further, from, to C ; then from C to D ; and finally from D back again to f . -Translation.
" I am dead on your separation and have no soul in my body,
For God's sake hear my sorrowful lamentation.
I have no marrow in my bones, O love, be kind to me,
Happy if I instantly die when separated from you."
Fig. 2. المشצ؟ Ulmoshojur ; the arborescent form.
In this the Arabic letter m is round, differing from the shape of the Persian. , placed in the centre of the circle of which the branches form radii, is the beginning of each word ; and the stars $1,2,3,4$, mark the end of as many hemistichs; the reading of the first begins semicircularly from B to C.-Translation.
" I am fond of the curled locks of beauties, And I am captivated by their moon-like faces.
I drink wine and am constantly a drunkard in the tavern, And I give thanks to the God of the heavenly kingdom."
Figs. 3 and 4. .
From the central commencing along either side at the letter E or F, and terminating where we set out, we shall arrive at the conclusion of two hemistichs.

The reading of either hemistich should be directed alternately from the right and the left hand, in order not to lose their respective sense and metrc.-Translation.
"Be not intoxicated, and do not go to the intoxicated ones,
O thou possessed of moon-like face;
Do not display vanity like the brilliant moon.
Thon hast charmed hermits, kings, and angels,
Bewitched the beauties by thy moon-like face."
Figs. 5, 6, and 7. The beauty of the construction of these three figures is, that the reading may follow any order of the compartments without altering the sense.-Translation.
" The world with its riches is under your subjection,
O Love, it is tyranny that thon liast not afflicted my heart:
Alas, there is no faith in the world; alas, there is no faith in the world."
Fig. 8. عر, all Ulmorabia, or a quadrilateral figure containing four hemistichs, and these are read in both horizontal and perpendicular
directions, beginning either from any of the four upper compartments downwards, or from any of the four perpendicular compartments of B, D, sideways, from right to left ; and the same verse will be found.
"I am in constant affliction owing to the absence of that ravisher of my lieart; That ravisher of my heart whose love keeps me awake with aftliction.
I am constantly in pain without a companion and without a friend;
I am sick, I am awake, and without a friend and without a sympathizer."
Fig. 98 شكلل Shakl-i Arrah, or saw-like form. The distichs are read in the usual manner as follows:

III.-Description of an Indian Balance, called Tula. By the same.
[Presented at the Meeting of the 31st July.]
This instrument is made out of common wood, but generally Súndri (Herritiera minor) is used.

It is employed by the Músulmán Kághazy, or paper-makers, for the purpose of weighing old and useless papers; it is also used for weighing cotton, as well as thread, by native weavers of both sexes.

The marks of division around the beam are the indications of diffcrent weights, as particularized in the accompanying drawing.

The larger string, named wazni-rassi (or the string for suspending weights), is introduced through a perforation at the end of the beam; and the little one, termed neti, is for holding by the fingers to ascertain the weight, by applying it on one or other of the marks above alluded to.

The accompanying plate (Plate xxii. fig 8) is one quarter the ordinary size of the instrument, but some are a little larger, and others smaller.

It is in principle similar to the Roman steel-yard, the fulcrum shifting instead of the weight.
IV.-Abstract of a Meteorological Journal, kept at Kotgarl, (Lat. 31° $18^{\prime} 45^{\prime \prime}$ N. Long. $77^{\circ} 27^{\prime} 49^{\prime \prime}$ E.) Subathú, and the intermediate places in the Himálaya mountains, for 1819-20. By Captain Patrick Gerard, 9th Regt. B. N. I.
The voluminous nature of these journals, which were presented by Captain Gerard to the Asiatic Society some years ago, has hitherto prevented their seeing the light. The very circumstance which constitutes their value as a record,-the minute detail for every hour of the day, continued with little interruption by an indefatigable observer, for a period of two years,-having in the end thwarted his views and his
reward, while they have deprived the scientific of a most valuable and will digested register of meteorological data. It would be impossible to devote space for their entire publication in the pages of this journal, but such an abstract as we have gleaned from many similar tables on former occasions, and which will suffice for most purposes of a general nature, especially for that we havehitherto kept in view, -the fixing of the constants of diurnal and monthly range of heat and pressure for as many points as possible on the continent of India, -we now with permission present to our readers : prefixing Captain Gerard's account of his instruments and of his method of observing.
"With regard to the tables which I now transmit, I beg to state that, generally speaking, the means of the observations, whether of the barometer or thermometers, attached or inside, and detached or outside, in the air and sbade, taken during a march or halt or temporary intermediate place of encampment, are deduced from tbe highest during the day, and lowest the following morning, which will furnish a correct mean of the place for the day. The attached or inside thermoneter at Kotgarh was ratber open to a westerly aspect, the observations being taken in a room of the house to the westward, thereby shewing a somewhat higher temperature than if taken in a room towards the north. This was merely done for the sake of convenience. The detached or outside thermometer was suspended on a pole fixed in the ground for this special purpose, apart from the house, from day-break or early in the morning, to the north-west side for nearly balf, and to the N . N. E. side for the remainder of the day, in the air and sbade, to obviate as mucb as possible the sudden effects arising from reflection from the eartl and the sun's rays in clear, settled, and hot weather; wbich would tbereby indicate a bigh.. er, and consequently somewhat a more incorrect temperature of the air, than it otherwise ought to do, had it been hung at a considerable distance from any building hetter situated and free from the influence of all or any degree of reflection, so liable at all times to raise it above the true standard.

The barometer used duriug tbe two years, to insure accuracy as far as practicable in the instrument, was unexceptionable in every respect, being filled with pure mercury, carefully revived from cinnabar, by distillation in a retort, with the filings of iron, and gradually boiled over a slow charcoal fire from the sealed eud upwards, which process is alsays tedious and difficult of accomplisbment.

As not less tban ten or twelve observations were taken and recorded daily with nicety, the correctness of the following tables may be relied on.

I possessed no instruments for ascertaining the density and humidity of the at. mospbere, evaporation, or the quantity of rain which has fallen during the years under review. The winds stated as stormy, strong, brisk, steady, moderate, gentle, little, and light, have been estimated by their supposed strength unaided by a guage, to indicate their actual force. The same may be noticed in regard to the quality and appearance of the clouds.

The sudden creation and increase of clouds, spontaneously rising from dells and valleys, subsequent to rain and snow*, more especially during the periodical

* During the rainy months, the clouds, after rising, forming, and collecting, ascend to a certain altitnde, and generally remain stationary, and frequently day after day abont the same time come down again in rain.
rainy and winter seasons, on the hither or Indian side of the Himálaya range (the opposite or nltra side of the Himálaya being little subjected, and that only for a short distance into the interior, from the loftiness of this grand and extensive harrier of mbuntains separating India from other parts of Asia, to such a deluge), are more astonishing to the beholder than thave words to describe, and their total disappearance in a short space of time (sometimes indeed almost in a moment) is equally surprising. I have often remarked these without any apparent cause during calm settled weather, moving in all directions in heavy loose masses; at other times with incredible velocity, resembling spray, down a ridge or valley, till thcy reach a certain point, wben they evaporate, and in an instant disappear. Sometimes they may be seen in all shapes and curious forms, and frequently they accumulate and disperse in a manner quite astonishing to the spcctator. They will rest for days, and even weeks, upon the top, and the slopes of the high surrounding ranges and mountains, defining a clear outline around*, thereby condensing and confining the atmosphere within certain limits at an altitudc of 8000 feet and upwards, (rarely at a less elcvation for any time,) above two or three days, and making it close and sometimes unpleasant to the feelings, although the thermometer may indicate a low temperature at the time; and often in clear, cloudless temperature and mild weather, small patches may be scen stationary in some places, and suddenly gliding along and up the declivity or slope towards the tops of the monntains, and dispersing quickly in others \dagger.

The principal places at which any number of observations were taken are Rampúr, Kotgarh and Subathú. At intermediate places, during a march or tempo. rary halt, the observations taken were recordcd.

The latitude, longitude, and elevation above the level of the sea + , together with the name of each village, town, and encampment, on the journeys made each year ; the state in which comprised; and to what authority now sulbect, will be found detailed in a table or " List of Places, \&c." at the end of the abridgement, and other tables for each year.
The point of ebullition and the temperature of springs, rivers, and streans have not been omitted at most places in the subsequent slicets, during a journey. The utility of the former, when unaccompanied with a barometer, is too evident almost to need illustration. It will give a tolerable idea of the elevation of different stations; while the second, which were only ascertained at a few places, will nearly shew the mean temperature of the year at different altitudes; and the latter will certainly, from the diminution of tcmperature, indicate a tolerablc estimate of the distance of the source of the rivers in the water of which the thermometer may have been dipped, and an observation taken of its temperature. If rivers and streams indicate a high temperature, the source of them may reasonably be considered to be remote; but if a low temperature be evinced, the contrary may be supposed to be the case. Certain local circunstances and influences may in some degree affect the temperature of rivers."

* These remarks apply to Kotgarh and its neighbourhood, and indeed from Simla upwards, as I can affirm from my own long observation.
\dagger The sun's rays after rising have in general this effect.
\ddagger For these on the present as well as on the former occasion I am indebted to my brother, Captain A. Gerard, late Surveyor in Rajputana and Malwa ; and for a few of the latter, and partly some of the observations of the barometer and thermometer during my occasional short visits to Subathú, to my brother Mr. J. G. Gerard, Surgeon to the lst Nassiri battalion, stationed in these mountains.
Summary of Captain P. Gerard's Meteorological Registers for 1819-20.

Place.	Month. 1819	Barometer 32°.			Temperature in the $\left\|\begin{array}{c}\text { Temperature outside, } \\ \text { house. } \\ \text { in the shade. }\end{array}\right\|$						Winds. no. of days in each direction.				Average force of the wind.	Weather.			$\begin{array}{\|l\|l\|} \dot{x} \\ \stackrel{y}{2} \\ 2 \\ 2 \end{array}$
	Month. 1819.	$\begin{aligned} & \text { at } 10 \\ & \text { A. м. } \end{aligned}$	$\begin{aligned} & \text { at } \\ & 4 \text { р. м. } \end{aligned}$	mean.	max.	min.	mean.	max.	min.	mean.	Ne.	E. S	Sw.	W.					
Kotgarh,	Jan. 8 to 31	23.585	. 557	. 568	40.6	35.9	38.3	-	30.6	-	3	10	4	13	gentle	16		7	
Ditto,	Feb. 1 to 28	. 6999	. 650	. 675	44.7	41.2	42.5	42.9	33.8	37.6	3	13	1	11	ditto	11	8	911	Generally fine; snow. Fair with storms.
Subathú,	Mar. 1 to 28	25.909	. 855	. 872	67.9	59.9	63.8	73.5	55.2	64.4	7	0	211	0	moderate	18	7	313	Clear and fine.
Ditto, Kotgarh	Apr. 11 to 30 May 11 to 31	. 814	. 747	. 780	73.2	67.11	70.1	80.8	59.6	69.8	3	0	15	11	steady	15	0	54	Clear with squalls.
Subathin,	June 5 to 30	. 706		-	63.15	60.2 76.7	61.6 79.0	-84	50.3	77.	0	16	4	11	light	12	5	14.8	Clouds gathering.
Kotgarl,	July 2 to 31	23.559	. 508	. 635	83.1	76.7	. 2	84	70.5 60.3	77.9	5	7	10	7	strong	9	10	10 \| 8	Fair and rainy.
Ditto, :	Augt. entire	. 518	. 471	. 494	71.3	67.1 66.3	68.2	-	60.3 60.2	-	1	121	2	7	light	2	10	19 19	Cloudy and rain.
Marching	Sept. do.	.	. 4	.	65.0	57.0	60.9	-	51.5	-	2	19	0	10	ditto	2	9	21	Much rain.
In mountains,	Oct. irregular			-	60.0	50.0	55.0	50.0	30.0	40					gentle	20^{\prime}	5	6	Fair weather.
Kotgarh,....	Nov. 16 to 30	. 724	. 661	. 693	49.5	47.1	48.3	-	37.2	-	-	6	-	8	ditto	22	5	$3{ }^{3} 1$	Cair weather. Clear, fine.
Ditto,......	Dec. 1 to 25	. 744	. 680	. 711	46.6	45.6	46.1	-	39.3	-	4	16	8	3	light	11	13	71	Fair, cloudy.
	1820.										28	108	65	71		139	86	12640	
Travelling, \cdot	Jan. 11 to 22	. 65.3	. 601	. 627	41.1	40.0	40.6	-	36.2	-	7	7	7	2	light	26			
Kotgarl,	Feb. 9 to 29	.619	. 563	. 589	45.4	43.7	44.6	-	36.8	-	6	7	2	14	gentle	14	6	${ }^{2}$ 9 1	Clear. Clear snow.
Ditto, .	Mar. 1 to 15	. 718	. 648	. 686	52.2	50.6	514	-	435	-	6	3		6	ditto	17	5	$9{ }^{9} 4$	Ditto showers.
Ramgarh	Apr.	-	-	-	75.6	59.0	67.5	-	50.9	-		-			ditto	14	4	125	Fair and do.
Kotgarh,	May 11 to 31	. 600	. 526	. 559	66.4	63.6	65.3	-	54.5	-	1	6	2	11	ditto	15	8	885	Storms and fair.
Ditto,	June entire.	. 489	. 432	.461	72.1	68.0	69.8	78.1	60.5	70.0	1	13	6	10	moderate	10	9	11	Cloudy and do.
Ditto,	July do.	. 496	. 435	. 455	71.4	66.1	69.4	77.4	61.4	69.9	5	20	2	4	light	0	3	28	Much rain.
Ditto	Augt. 1 to 21	. 542	. 467	. 509	71.4	68.0	70.5	75.0	61.0	68.0	5	13	1	5	ditto	0	9	22.	Ditto.
D	会 $\begin{array}{r}8 \\ 20 \text { to } 30\end{array}$. 550	. 492	. 522	69.3	64.6	66.7	72.1	56.8	64.5	1	16	0	6	ditto	6	11	13 2	Clearing.
Ditto,......	Oct. entire.	. 668	. 596	. 639	62.5	56.9	59.7	63.2	48.9	56.8	0	17	2	12	ditto	20	5	$6{ }^{6} 3$	Fine weather.
Th. Rampúr,	Nov. 1 to 4	. 662	. 613	. 637	74.8	57.3	66.1	73.4	43.2	58.7	9	1	19	,	gentle	18	7	5 I	Clear and clouds.
Rampur,	Dec. 3 to 31				51.4	44.8	49.4	63.9	37.4	50.7	5	0	25	$1)$	ditto	17	10	$4{ }^{4}$	Ditto.
rage at Kot	garh,	23.624	. 562	. 593	58.6	55.4,	56.9	63 ?	47.7	56?	46	103	66	72		157	80	12932	

With exception of the month of April, so inviting to a resident in the hills for expeditions into the higher and more remote parts of the vast Himálayan range, we find in the foregoing abstract, besides three months at Subathí, a nearly complete annual series of barometrical observations for Kotgarh, a station more than 6000 feet elevated above the sea*, and far enough within the first range of hills to obviate the effects of the currents of air from the plains, as observed in the Dehra Dún by Dr. Roylet. It must not be expected that the regularity observed on the level continent of India will be found in the march of the barometer in a mountainous country, where fluctuations of temperature, moisture, and wind are much more frequent and sudden than in the plains; still the same general curve obtains through the year, and the diurnal rise and fall is regular and of the same nature as in the plains, not a negative oscillation as is observed at great elevations on the Alps. The average diurnal oscillation or fall from 10 A. м. to 4 р. м. is 0.063 inch : to which adding one-fourth (or, as 30 in. to 23 in .) to render it comparable with the oscillation under a pres. sure of 30 inches, we have .079 , which is only two-thirds of the daily oscillation at Seháranpúr + , as deduced from Dr. Royle's registers; we may therefore conclude that at a greater elevation, we should observe a still further decrease until, passing zero, the diurnal oscillation would become negative; that is, the barometer would rise from $10 \mathrm{~A} . \mathrm{m}$. to 4 р. m. as observed at the convent of St. Bernard's. The solution of this curious question and the determination of the zero or no oscillation altitude, may probably be obtainable from the journals of Captain Gerard or his brother, Dr. J. G. Gerard, who is known to have reached an altitude of 17000 feet, barometer in hand; and we may confidently trust to their joint exertions in elucidation of it : for one fact of this nature estabished on certain data will better repay their labours in the course of meteorology than even a lengthened series of ordinary observations.

The thermometrical range out of doors is incomplete, the minimum only being registered : there cannot however be a wide difference between the monthly mean, in-doors, and in the open air. The monthly variations deduced from the latter column, (the monthly mean's) or from the column of exterior minima, give nearly the same annual curvature. The following table (column g) takes it from the interior mean. April and October are the two average months for temperature as well as for pressure, but the months of January and February present an anomaly in the barometer being lower than usual for those months in both the years under review.

* 6915 feet, by Capt. Herbert, As. Res. xiv. 336 ; 6600 by subsequent correction, vol. xv, 413.
+ See his note on the hour of maximum temperature in the hills, Jour. As. Soc. vol. i. p. 97.
\ddagger Journal, i. 30.

Table of the mean Monthly and Diurnal Range of the Barometer and Thermometer at Kotgarh in !819-20, (the month April being interpolated,) deduced from Captain Gerard's journals.

Month.	Barometer.			Thermometer.				
	Mean height.	$\begin{gathered} \text { Deviation } \\ \text { from mean } \\ \text { annual } \\ \text { height. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { c. } \\ \text { Mean } \\ \text { diurnal } \\ \text { oscilla- } \\ \text { tion. } \end{gathered}\right.$	D. Mean of minima in the oonen air.$\|$		$\left\|\begin{array}{c} \text { F. } \\ \text { Mempen } \\ \text { rempe- } \\ \text { rure } \\ \text { doors. } \end{array}\right\|$	Deviation from mean annual tempera- ture.	$\left\lvert\, \begin{gathered} \text { н. } \\ \text { Mean } \\ \text { diunnal } \\ \text { range } \\ \text { (e.-d. } \end{gathered}\right.$
January,	$\operatorname{in}_{23.592}$	in	in 0.052	$\stackrel{0}{33.4}$	$\stackrel{0}{0.9}$	39.5	${ }_{-20.4}$	75
February,	632	+.039	. 052	35.3	45.0	43.5	-13.4	9.7
Narch,	. 686	$+.093$. 062	43.5	52.2	51.4	- 5.5	8.7
April,	. 623	$+.040$. 057	47.	58.	57.	+ 0.1	11.0
May, 559	-. 034	. 074	52.4	64.7	634	+6.5	12.3
June, 461	$-.132$. 068	60.5	72.1	69.8	+12.9	11.6
July, .	. 495	-. 098	. 061	60.8	71.4	69.3	+12.4	10.6
August,...	. 501	-. 092	.062	60.5	71.4	69.6	+12.7	10.8
September,	. $52 \% 2$	-.071	. 058	54.2	69.3	66.7	+ 9.8	15.1
Octoher, ..	. 639	+. 046	.072	48.9	625	59.7	+28	13.4
November,	. 693	+. 1100	. 063	37.2	49.5	48.3	-8.6	12.3
December,	. 711	+.118	. 064	39.3	46.6	45.0	-11.9	13.3
Mean,	23.593	nge . 250	. 063	47.7	58.6	56.9	ange 33.	11.3

In the column (c) of mean diurnal barometric oscillation, the observations at Subathú have been included, as producing a better average; the difference of altitude will in this case have but a trifling influence on the result.

Appended to Captain P. Gerard's tables are catalogues of the latitude, longitude, and barometrical altitude of all the most important points visited in the course of the journeys, whose occurrence is marked by the blanks in the foregoing register. The journey of September, 1819 , was made in company with the late Captain J. D. Herbert, to survey the course and level of the river Satlej, of which an interesting account is published in the fifteenth volume of the Asiatic Researches. The heights were partly taken trigonometrically, but the majority by the boiling-point method, and a correction of two degrees and upwards was forced to be applied to the instrument used by Captain Herbert, on account of an error deduced experimentally from a comparison of its boiling point with the height of a barometer filled with pure mercury, and well boiled, by Captain Gerard; Dalton's Table of Tensions were used in calculating the volume of the thermometric indications. The latter officer, in his remarks upon the tables before us, explains that his own thermometrical heights were taken with a different instrument, which did not require correction, and that they were calculated by his brother, Captain A. Gerard, on the supposition of the sea level being represented by 30 inches, or 212°. A deduction of 200 feet may in some cases be necessary on this account, but it will hardly affect the relative measurements, especially as the
trips were made in April, September, and October, the months, as before stated, of mean barometrical altitude.

The following table contains a selection of some of the principal results of this part of the journal, and if compared with that printed in the Researches, it will be seen to afford the highest confirmation to Captain Herbert's statement; the altitudes and longitudes are from the latter.

In 1820, our author went alone by another route, and made some additions to his list of altitudes. The whole ought to be published, but they would require the elucidation of a route-map and notes of the journey.

On both occasions also, the temperature of rivers and springs was carefully noted, and a sure indication was thence deduced of the distance, direction, and source of the stream ; a few of these are inserted below :

Extract from Captain Gerard's Table of Altitudes.

1819. Place.	State.	Latitude. North.	Longitude. East.	Boiling Point.	Elevation above the Sen
Rámpur, capital,	Bussáhir,	$31^{\circ} 27^{\prime}$	$77^{\circ} 38{ }^{\prime}$	206,8	3398 tt.
Nirtuagar, village,	Do.	3122	$77 \quad 33$	206,6	3087
Kotgarh, cantonment,	British,	$31 \begin{array}{ll}31 & 19\end{array}$	$77 \quad 30$	200,7	6634
Komharsén, capital,	Komliarsén,	3119	$77 \quad 27$		5500
Subathú, encampment,	British,	$30 \quad 58$	$76 \quad 59$		4505
Manlig, encampment,	Patiála,		- 11		4400
Semla, do.	Keonthal,	1316	7711		7200
Wartú fort,	Several,	3114	77		10656
Pabar, river near Raingarh,	British,	318	$77 \quad 46$	202,7	5700
Rontan, village,	Do.	31	7748	198,5	8900
Encampment in Klashél range,	Bussáhir,	———		194,1	12900
Jako l'eak,	Do.			196,1	9100
Crest of Rúpen Pass*,	Do.	3121	$78 \quad 10$	185,7	15460
Murang,	Do.	3136	$78 \quad 27$	197,4	8503
Shipké, in Chinese Tartary,	Tibet,	3148	$78 \quad 45$	$\left.\begin{array}{r} 193,8 \\ 194,0 \end{array}\right\}$	10597
Hupshang, boundary between	Busahir\&Tibe	3148	7841		10989
Náku, village,	Bussaliir,	3115	$78 \quad 38$	191,7	12005
Shealkbar, village and fort,	1 1)0.	32	$\mid 78 \quad 35$	194	10403
Kánam village,	Kunáwar,	3140	$78 \quad 27$	197,2	9000
Wangto jhula, bridge over the	Satlej,	3132	78 1	203,3	5200
Dalnagar, village, 1820.	Bussahir,	13123	7736		3200
Mandar Glítí Pass, boundary,	Do.	3116	$77 \quad 38$		9800
Sirarú Pass,	Do.	3110	$77 \quad 37$		8885
Purag,	Kotgúrú,	317	177		6900
Nágkanda Pass,		$31 \quad 15$	$77 \quad 28$		9016
Dubalda range,	Kuranglu,	$\left\lvert\, \begin{array}{ll}31 & 17\end{array}\right.$	$\begin{array}{ll}77 & 35\end{array}$		7300
Top of Nankhar range,	Bussahir,	$31 \quad 17$	$77 \quad 37$		7800
Búchkàl, on ascent to	Shatul,	3122	$77 \quad 561$		11700
Crest of left peak towards Shatuk or	Rol Pass,	3123	7755		13300
Chandidhar range,	Do.	31 16	$77 \quad 56$		9200
Kinjean, village, Jangleg,	Bussahir.	\|31 18	$\left\lvert\, \begin{array}{ll}78 & 1 \\ 7 & \end{array}\right.$		9250
Kepu, bridge over Satlej,	British,	$\mid 3121$	$\|77 \quad 28\|$		2800

* This pass is called the Gunas Pass by Capt. Herbert, (As. Res. xv. 413,) by mistake-the Gunas is another passage across the Himálaya, lying to the westward of the Rupen River.-P. G.

Temperature of Rivers, Springs, and Torrents observed.

	1819.		0
Spling between Phagao and Theog,	8 th May.	$7 \mathrm{~A} . \mathrm{m}$.	45,2
Stream on Klashél Range,	24th Sept.	11 A. M.	45,5
Rupen River, below Pass,	29th	9 А. м.	40,5
Satléj River, below Shipké,	15th Oct.	5 р. м.	51,3
Do. at Namghea jhúla,	$\begin{aligned} & 22 \text { nd } \\ & \quad 1820 . \end{aligned}$	9 A. м.	44,0
Beru Naddí or Torrent,	4 th Jan.	9 A. M.	33,1
Grassu and Badí Torrents,	5 th	$8 \frac{1}{4} \mathrm{~A} . \mathrm{M}$.	29,5
Chegaontí River,	9th	$8 \frac{1}{2} \mathrm{~A} . \mathrm{m}$.	33,6
Pabar River, near Mandlí,	23rd Mar.	5 P. M.	52,7
Andrí near Chírgaon,	24th	$7 \frac{1}{2} \mathrm{~A}$. M.	43,0
Gop and Chílu Torrents,	30th	9 A. м.	43,0
Sepon River,	30th	10 A. M.	40,1
Pabar River, near Raingarl,	7 th Apr.	$6 \frac{1}{2} \mathrm{~A}$. M.	51,8
Shillar Torrent,	20th	6 A. м.	47,0
Tons River at conflux with Pabar,	25 th	7 A. м.	57,0
Shatwe River,	2nd May.	6 р. м.	69,9
Couflux of Slatwe and Kholte Rivers,	5 th	7 А. м.	56,0

V.-Notes on the Specimens of the Kankar Formation, and on Fossil Bones collected on the Jamna. By Captain E. Smith, Bengal Engineers.
[Read 26th December.]
Captain E. Smith has been engaged for some years in removing the obstructions to navigation in the river Jamna, between Allahabad and Agra. These obstructions, as is well known, consist of sandstone rocks and kankar banks, protruding from the bed of the river at several points, leaving, at low water, dangerous bars but partially concealed, and causing rapids and whirlpools, which have proved in years past highly destructive to boats. In the course of this important duty, of which we hope hereafter to be able to give a full account, the peculiarities of the kankar formation, which has been the subject of so much speculation to Indian geologists, have been strongly impressed on his observation, and he has very laudably preserved sketches and remarks of their most remarkable appearances in his note-book, which he has now submitted with the series of specimens to the Society. "They are not numerous"-he writes, " laving been taken only where differences in the kankar and rock were evident, but they form a regular series from Agra to Allahabad, shewing the nature of the rocks occurring throughout that distance. Having little knowledge of the subject myself, I have not attempted descriptions of the specimens, which will be more correctly recognized by others, but have substituted what may be of use, viz. sketches and notes of the exact situations whence the specimens lave been obtained. These even amount to little more than indica-
tions of place, for almost the remarks that have offered themselves have been reserved until I know whether they will be of service."

All geologists will agree that the graphic mode of illustration adopted by Captain Smith is the very best for communicating at once an acquaintance with the nature of the country he has explored, and though confined to the banks aad bed of a river, it must be remembered, that the section thus opened to him by the operations of nature, to a depth in some places of 100 feet or more, is a section of the great alluvium of the Doab and of the Agra plains, and not, as it would be in the lower course of the Ganges, a mere exhibition of the continually shifting channel and sands of the comparatively recent delta.This remark extends particularly to the fossil bones discovered at Karimkhín and other places, which will be seen, as we proceed, to belong to the genuine class of fossils, underlying the kankar stratum of the clayey alluvium, and are not merely casual deposits in the present river, as Captain Herbert was led to suspect when their existence was first pointed out, in a situation of the same nature, near Calpí, by Doctor Duncan, in 1828*.

Dr. Royle also brought away a fragment of bone in 1831, and expressed his opinion that fossils would be found in the banks of the Jamna, (Journal, vol. i. 457.)

Regarding the present collection of fossil bones, Captain E. Smirn's private letter furnishes the following particulars: "With the specimens of rock there is a box of fossils; I have done little more than indicate the localities, with a few remarks on the state othe bones, originating in

[^3]my acquaintance with the situations in which they are found. The portion of the subjoined note in which the fossils are assigned to different parts of the skeletons of various animals, has been derived from better authority than I can pretend to in such questions. From what has been oltained in the last year or two, it seems that fossils in great abundance are lodged in the bed of the river. They have in previous years of the works been procured in smaller quantities, from rocks or shoals differing in nature from those of the last season, having been removed in the first periods. One cause of so many having been of late discovered has been the presence of intelligent European overseers, whose curiosity has been excited by remains which were matter of indifference to the natives. It is to be regretted, however, that the attention of the men was not directed earlier to the preservation of these fossils.
"I became acquainted with their discovery in such quantities, and of such dimensions, only after an absence from the spot, during which the excavation had been completed, and could then collect merely a few of the fragments, which an interest in the subject on the part of some of the sergeants had induced them to select. Much however has been lost, and as seen in the list, a small piece only was kept of the shoulder blade of an elephant, (No. 3,) described as very perfect, but which unfortunately, with the rest of the mass removed from the shoal, was thrown into the water of a deep channel. I have lately got some more fossils, and in the course of the cold season, I shall have an opportunity of visiting some, of the existence of which in the banks of the river I have just had information, and which (if the account I have received be correct) would seem to prove that the process of petrifaction is still active."

Captain Smith has divided his notices under three heads, which we here insert in the same order, adding the characters of the rocks, and in some places their analysis, from the specimens presented to the Society.
I.-Notes with Explanatory Sketches on a Description of Kankar found in Slabs in part of the bank of the Jamna. (Plate XXIII.)
A description of flag, composed of sand coarsely but strongly cemented, in thin slabs, horizontally disposed, is found in considerable quantities at a short distance from Kárímkhán, near Oreyah, on the Jamna. The situations from which it is usually dug are shown distinctly in the accompanying sketches, with the references and notes; but the flag is not confined to the banks of the river, (Sketches Ist and 5th,) being raised as well from sand-banks far out towards the centre of the bed of the stratum.

It is excavated principally by the boat and ghat men, or the villagers of the Mallah class, on the immediate spot ; and the search for it, and the mode of raising it, is simple.
In the hot months, when the river is low, these men observe what parts of the bank have been left by the river (Sketch 1st) so bare of sand, or deposits of mud, as to allow of a probability of the flags being reached without much labour in the removal of the superincumbent body. They are, from the excavations in former years, acquainted with the spots in which they may expect to find the flags, and the upper mass being cleared away, if the flags are reached, the excavation is carried on as long as the easy slope of the bank allows of its being profitable. It is generally from about the bottom of the bank, at the levcl of the lowest fall of the river in the dry months, that the flags are taken, and they are traced at all heights from this level up to 20 or 25 feet above it, but rarely or never higher. Below this lowest level, they are found in depths as great as the water has allowed of the excavation being prosecuted in, but that is not more than 4 or 5 feet. Towards the centre of the river they are raised from similar depths below the surface (Sketch 4th) from a space on which sand settles annually over a greater or less extent. Whenever any part is perceived free of sand, and the flags felt at the bottom of the water clear of that obstruction, they are detached by common iron implements, and raised. As is the case near the shore, the depths from which they are lifted do not exceed 4 or 5 feet. In raising the flags, it is usual to cut them across, (Sketch 2nd,) to reduce them to manageable dimensions, and as they are sometimes connected with eacl other at the edges, they are there too cut asunder. They are generally taken out in lengths of from 2 to 4 feet, the breadth varying from 1 to 2 feet.

Long round pieces are sometimes found between the flat slabs, (Sketch 3,) that is of course when the latter are not so close as to be connected. These round pieces are always smooth, never knotted, at least as those common on the surface of the kankar banks and shoals usually are. The round are always met within the horizontal line between the flat pieces, never above or below them, not even when there are double or treble strata of slabs. The directions of the lateral divisions of the slabs, as also of the grooves which channel the surfaces of both the flat and round pieces, is stated to correspond nearly with that of the present course of the river. These flags are said to harden on exposure to the air. It is unusual to find, in other parts of the bank, fine sand, similar to that of the sand strata immediately adjoining the
flags, and to that of flags themselves*. It seems to be of a kind peculiar to this bank of the river, about the lowest level. Cursory observation at least does not discover it elsewhere. It is darker and greyer, but otherwise not unlike the fine sand of the superficial beds. Flags, it is asserted by the people, are never found on the sites of former excavations, that is, they believe them to be old deposits, and have no expectation of discovering fresh formations in the spots from which they have once before raised the layers. Projecting eaves from the roofs and windows of the native palka houses are in this neighbourhoodvery generally constructed with these flags. It seems to be the use to which exclusively they are applied, and they are conveyed for it to Calpí and other towns in the vicinity, where they are sold at a few rupees a hundred.

Similar flags to these may very possibly exist on other parts of the bank of the river, but they have never been observed or heard of except at this place, and here but in one bank of about half mile in length, and in the bed of the river opposite to it. Although, as shewn in Sketch 5 , this is now the main bank of the river, it has not always been so. At some very remote period, the Jamna must have ran along the foot of the higher plain on which Kentra stands, and which line, with the relative distances and elevations, is seen on the small sketch.

References to the Sketches.

Sketch '1. a. Sand in strata, alternating in thicknesses of the flags.
b. Lowest level of the river.
k. Cess-pool for baling out the water.
c. First stratum of flags.
d. Intervening layer of sand, fine, of the same color and description apparently as that in the composition of the flags, varying in thickness from 6 in. to 1 feet.
e. Second stratum of flags.
f. Second intervening layer of sand.
g. Third stratum of flags.

From 1 to 5 , strata of flags and intervening sand are found.
Sketch 2. The slabs in their natural position, in the sand or the river. -- - Cuts made by the people to detach them.
sketch 3. Plan and section shewing the round pieces of kankar (a) found lying between the flat slabs ($b b$).

Sketch 4. The method of obtaining the kankar from the sand-beds towards the centre of the river.
A. One of the men separating the pieces by a sharpened crow-bar.
B. Another lifting up the detached pieces from the bottou.

[^4]$=$

fig. 8

Fop of stratum A.
\qquad
fig. g

Level os water

fig. 12

fig. 14

fig. 17
Sig. 15
Varieties of Kankar in the Pinks of the jumna

Sketch 5. Plan of the locality.
a. Present bank of the river, 40 to 60 feet above the lowest level of the dry season.
b. former bank, 100 to 140 feet above ditto.
c. Bank, in, or near which the slabs are found.
2.-Notes on Specimens of Kankar and Rock taken from the Bed of the Jamna, between Agra and Allahabad. (Plate XXIV.)
Fig. 6-represents a section of the river bank at Sinjaity, above Etáwa, with the kankar jutting under water.

No. 1. Loose kankar gravel, cemented with clay and lime.
2. Ditto, with kankar cement: micaceous sand.
3. Botryoidal kankar.
4. Resembles 2, but more solid.

Fig. 7.-Kalaysur, at the junction of the Sinde, 20th April.
No. 5. Hard sandy kankar.
6. Stalactitic kankar, rich in lime.

Fig. 8-is a plan of the surface of stratum A in the last sketch, which much resembles the filling up of the natural cracks, formed on the drying of a clayey soil, with a carbonaceous and sandy infiltration.

Fig. 9-shews the general elevation of the specimens from Kalaysar. The main bank immediately above rises to the height of about 70 feet, and at a furlong further back, to a total height of 130 feet; above the kankar the bank is of fine clay.

No. 7. A concretion of rolled fragments of kankar.
Fig. 10-is a section taken at Kanjosa, at the junction of the Sinde. Here the nodular kankar lies in inclined strata in a hard clay, upon the horizontal surface of which rests a flat plate of kankar, (similar to that extracted from the bed of the Jamna ?)

Fig. 11.-Himatpúr, 20th April. A mass of nodules in close contact, but disposed in strata nearly horizontal; some at 12 feet above the level of the water, some at less. The kankar which has acted as a cement to the mass is seen in veims.

No. 8. Hard ramified kankar.
9. Smaller, of various forms.

At Burlot, below the junction of the Chambal, 20th April.
No.10. White kankar in sandy clay; of this there are extensive shoals, which offered obstructions to the navigation.

No. 11. Rock kankar, a granular concrete, with marks of sliells? Stratuin, two feet thick, sixty fcet above the lowest level of the river : total height of the precipitous bank about 100 fcet.

Fig. 12.-At Nani, between Calpi and Hamírpirr, the measurement and nature of the strata are shewn in the sketch.

No.12. Is a firm clay.
13. A sandy marl, effervesces with acids.
14. Rock kankar, a calcareous sandstone, containing angular fragments of silex, felspar, and yellow clay. A few strata, about one foot thick each, with strata of the usual description between, form together masses of 12 feet thick rising to 17 feet abore the surface of the water.

Fig. 13.-Section of the clay bank above Hamírpur and below Secrori Ghit. The kankar (15) here appears in vertical seams in the scarped front of the bank, which is itself of a firm clay.

No.16. Sandy clay, with perforations-and an imbedded unio shell, open.
mirpúr.
Fig. 14.-Section of part of the bank at Arroel, below Hamirpur.
No.18. Kankar conglomerate (large rolled fragments, reunited with kankar cement).
19. Plate kankar, of botryoidal form-micaceous sand adhering: from Takourí near Chiladáa Ghát, it appears combined in large rocks and reefs.

Note.-To this part of the Jamna the clay and kankar formation prevails. Below, fresh descriptions of rock supersede the kankar, except in the specimens distinguished as such.
20. Red vitrified clay, or khangar, of variegated color, from Marka. The mass is about 200 feet in dimensions, rising 20 feet above the level of the water.
21. Ditto, partially heated, found in detached lumps near the base of ditto.

Figs. 15, 16, 17.-At Agrye, Ist May, above Mhow. Veins of kankar (No. 22, clayey kankar), here run in veins through red clay, containing nodules of kankar : from the unequal wear of such materials by atmospheric influence, the veins are sometimes seen to protrude like dykes above the clay, as represented in Fig. 15, to the height of half a foot or more : the superficial appearance is reticulated, as shewn in Fig. 17.

No. 23. Plate kankar from Kankota;-of this kind extensive beds and reefs occur, it is much the same as that at Pachkouri.

The other specimens forwarded with the kankar series, are as follows:

No. 24. A calcedonic conglomerate of fused lithomarge, forming the substance of a rocky island above the Taboda hill, taken from the mass 25 to 40 feet above the water-level.

Specimens from Mhow, 40 miles above Allahabad.
No. 25. Sandstone from the rock about the centre of the river, at six feet above the level of the water.
26. Lithomarge, in masses, 10 feet above the water.
27. Sandstone flag, from tbe Bundelkhand bank of the river.
28. Red clay and gravel (ferruginous kankar), running in veins 30 to 40 feet in length, 3 or 4 inches thick, taken from the same spot as No. 27.
29. Friable white sandstone, from about the centre of the river, near the lower part of the pass, forming large reefs and masses, 3 or 4 feet above the water-level.
30. Sandstone, fine grained, from a large mass about the centre of the river, in the ligher part of the pass, taken from 3 or 4 feet above the level of the water.

Specimens from the great reef at Bamiairi.
31. Hard sandstone, 6 to 10 feet above the level.
32. Kankar, in very small quantities, fond near the above.

Unless specified otherwise, it should be understood, that by the " level of the water," in the preceding notes, is meant every where the lowest annual level of the river.

Small springs, flowing in free through scanty streams, run from under many of the ledges of kankar on the banks of the river. They are rarely met with except in these situations, and in the possibility of their being still impregnated with the calcareous matter which seems to have been the principal agent in the formation of the kankar, some of the water has been brought off in bottles, - a rude attempt made here to discover the presence of lime was not successful in detecting it*.
3.-List of Fossil bones found in various situations in the prosecution of the Jumna works at Karimkhin, 1833.
The numbers refer to the specimens presented to the Society, and to the figures in plate XXV .

1. A tooth supposed to have belonged to an elephant, 14 or 15 years old.
2. The bony or inner part of an elephant's tusk.
3. The extreme point of an elephant's shoulder-blade; the remaining part of the bone weighed about $1 \frac{1}{2}$ maunds.
4. A portion of an elephant's shin-bone.
5. Portions of the back-bone of a camel, (?) or one of the vertebræ of the lower part of the neck.
6. Knuckle bone of the knee-joint of ditto.
7. That part of the shin-bone nearest the fetlock joint of ditto, or end of the shank-bone next the knee.
8. Portion of a rib of ditto.

* Both of these waters were found to be nearly pure, their specific gravity being sensibly the same as that of distilled water. On applying the proper tests, the only salt discovered in the water from Nani was carbonate of lime; that from Arroel contained the same, will a very slight admixturc of muriate of soda. The slight solution of carbonate of lime may have been rather derived from the kankar, than have aided in producing it.-Ed.

9. Portions of human bones, (?) the two black ones being the head of the thigh-bone and head of the arm-bone.
10. Two pieces supposed to have been parts of alligators.
11. Portions of bones belonging to the skeletons of horses, buffaloes, \&c.
12. The upper part of the leg-bone nearest the shoulder of a young elephant, or the lower part of the thigh-bone of the same animal.

1 and 2 were taken out of a mixture of sand and kankar, partially exposed to the atmosphere.
$3,4,8,9,10$ and 11 , were all procured on sloping the banks of a channel, the sides of which are from 1 to 5 feet above the lowest level of the river (the bank being 50 feet high.) They were dug from depths of from 6 to 18 inches in the firm shoal, which is composed of substances, kankar stone, gravel, rounded bricks (vitrified clay?) more or less rolled and cemented by mud and clay.
5. Were dug out of a cleft in hard yellow clay about 9 inches deep, filled with black mud, about 3 feet from the surface of the water.
6. Were found in the bed of the river about 18 inches deep, and 4 feet from the surface of the water, during the excavation of a bund.

12-was found on the left shore of the Jamna, at Choura, above Calpi, partially imbedded in a clay and kanker bank: all the rest were dug up at Karimkhin.

Of the fossil bones those found in the shoals of kankar were the least perfect, the petrifaction being less complete, or the fossil in inferior preservation. In the stiff clay, which composes a considerable portion of the bed of the river here, the fossils were in better order. This difference may be accounted for on various suppositions. The fossils, after being washed from the spots where they became such, might have been better preserved in the stiff clay than in the loose shoals; or the change into the fossil state may have taken place in the immediate neighbourhood of the clay, and those found in the loose shoals have been carricd by the water from the original place of formation, having suffered injury in their progress from their first to the new situation in which they are found.

It is difficult to assign to these remains the dates of their passing into the fossil state. The greater number have been found in an extensive shoal, of partially rolled kankar, cemented by mud, and which from known changes in the river might be of very recent accumulation. A large proportion of the fossils seem to have had a former situation in the hard clay of the bed of the river, however carried thence to the
kankar shoal. But whether they become fossils in the clay, or whether, after becoming so in other spots, they were swept on, till lodged in the clefts of the clay, still remains a point to be ascertained.

There is a probability in the former supposition, from the fossils found in clay being coloured throughout with its yellow tinge, whilst those dug up from gravel or kankar are of the greyish hue of these latter substances. If then the fossils are of the dates of the masses in which they were discovered, their age must be considerable, for the clay spoken of lies at great depth in the plain of the Doab, and must be a very early deposit.

In regard to fossils-will substances, after having completed their clange to that state in some other spot, acquire throughout their internal structure the color of clays, in the clefts of which, after travelling from a distance, they may have found a fresh resting place? If they will, the difference of color in the fossils leads to no evident conclusion on the preceding surmises. One curious particular seems established after repeated inquiries. The fossils marked 5 were taken out of clefts in clay which lay below a thick stratum of rock kankar. Still it is far from certain that the rock kankar was so entire, so free from fissures, as to permit of no other explanation than that of the fossils having been deposited or changed in the clay, before the formation of the kankar which rested in it. That clay is itself of great age, it is at the bottom of the river, 40 feet from the extreme height of the rise of the river in the rains, and from 100 to 150 below the plain of the Doab and Bundelkhand."

To these guarded remarks of Captain E. Smith, every attention is due, and he deserves our best thanks for so impartially laying the circumstances of the Jamna fossils before us. It would seem to be pretty well established from his local observations, that many if not all of the fossils were first deposited in the clay stratum from 100 to 150 feet below the plain of the Doíb, and under the general line of the kankar formation; that upon the excavation of the present bed of the Jamna, many have been washed out of their original seats and removed to clefts in the ledges of rock in the bed of the river, and have been there mixed up with a fresher muddy deposit, and in some cases impregnated with a tint therefrom. That they belong to the former period, and that the kankar attached to them is also nuch more ancient than the prosent sands of the river, is rendered sufficiently evident in some of the specimens by the large angular quartz and felspar gravel, cemented on to many of the bones. Some angular pebbles of
quartz are here and there perceived also in the concretions of rolled kankar ; and it is a curious fact, that the size and description of the granitic gravel adhering to the bones, exactly resemble the characters of those attached to the Jabalpur fossils.

With regard to the human bones (No. 9), much doubt may fairly be entertained, on account both of the imperfect preservation of the fragments and the rarity of their occurrence in a fossil state : indeed, it is well known to be a much contested point whether the bones of man, or those of the monkey tribe, have ever been so discovered; although the careful examination of the human remains lately found in the caves of the south of France seem to have set the point at rest with most of the French geologists.

As the Anuales de Chimie*, in which M. Tournal sets forth his opinions, is rarely to be met with in India, and as the animal remains inhumed in the mud and gravel of caves may prove hereafter to be contemporaneous, geologically speaking, with our newly-discovered deposits under the clays of the Dodi, we shall make no apology for concluding our present notice with a brief sketch of M. Tournal's view on this interesting subject.

Occurrence of the Bones of Man in the Fossil State.
The phenomena of caves is much more complicated than was at first supposed, when the simple theory of a diluvial wave washing into them the debris of animals on the instant of their sudden destruction was proposed as sufficient to account for the quantity of bones found imbedded in the mud, gravel, and stalagmite of these truly valuable geological depositories.

Of the vast number of caves lately brought to light on the continent of Europe, some have been found to contain no fossils; others merely gravel and mud ;-some, ancient bones and coprolite ; and others only a prodigious quantity of the recent dung of bats and birds of prey. No general law pertains to them. They occur at all heights ; -in calcareous rocks of every different age, and at various elevations above the present contiguous valleys. Such as are found in inaccessible situations, and at a distance from running water, are generally empty; those of which the apertures have been but recently disclosed by gradual wear of the rock in front, contain only modern deposits; the nature of the organic remains varying according to the locality and the antiquity of the aperture. In some cases we meet exclusively with the bones of a species of large bear (ursus spclaus), the skeletons of which are still in connection, and appear to have been gradually imbed-

[^5]Fofsil bones from the bat of the Jumnue Buver. wlledied by Canun F. Smith Eng.

1.3

14
ded and thus perfectly preserved. In others, like Kirkdale, the mass consists of a multitude of bones, half gnawed and rounded, among which is remarked a quantity of hyænas' dung (coprolite); in others a narrow crevice is filled with skeletons of the smaller carnivorous animals and birds. The formation in all these cases is natural and evident : the habits of bears and hyænas of the present day accord exactly with what we see to have been their practice in ages past : the caves were the residence of these animals for generations, and were by no means filled by any brisk transient or universal wave of transport : and there is no ground deducible from them for the separation of organic remains into the two classes of ante and postdiluvian.

The soil of these caverns generally has a strictly local origin, and may be identified with the debris of the neighbouring mountains. In most cases it can be proved to have been gradually introduced from some opening above, and not from apertures fronting the present valleys, which have in most cases been laid bare by the subsequent denudation of the channel of the present rivers, when the level of the ocean subsided : the strata of soil can be divided into the finest laminæ, and very often thick strata of stalagmite separate one bed of soil, and its contents, from the next.

Having proved that the fossil caves vary in their contents from local circumstances, and that they have been filled in very long periods, M. Tournal comes to the important question, whether the cave deposit ever contains human bones, or pottery and works of human art ; and, if so, whether these objects appear to be coeval with the other matter of the caves; in fact, whether man was or was not contemporaneous with animals now considered to be extinct, and, as it were, belonging to a former creation.

Human remains had been long since observed both in what was called diluvial clay, and in the soil of caves; but their presence was deemed accidental, and it became a dogma of the science that man existed not in a fossil state. The recent discovery however of the caverns of Aude, Herault, and Gard exposed a vast magazine of human bones and antique pottery inclosed in the self-same matrix with the hyæna, lion, tiger, stag, and numerous other animals, all of extinct species. Attention was thus once more awakened to the subject, and MM. De Serres, Christol, and Tournal, after an attentive and conscientious examination, have come to the conclusion that all these objects, are of the same date; whence it results that man was the companion of animals now considered extinct and fossil. The grounds of their opinion are ; -
the equal change which the bones have undergone : their mode of deposit : the variety of species in some of the animals, which denotes domesticity ; and the occurrence of extinct spccies bearing the marks of cutting instruments. The problem being thus resolved, it follows that man must also be included among the fossil species, or rather that the sudden transition from one condition of being to another must be disallowed, and that the same gradual alteration of species, already so fully developed by M. Deshayes in his comparison of the fossil shells of the different periods of the tertiary formations, must be extended to animals, and perchance to man himself: that, in fact, the barrier of fossil and non-fossil must henceforih be a distinction of convenience only, to separate such remains as may be found buried in the regular geological strata, from those of more modern or accidental inhumation.
M. Desnofers however suggests that these bones may be comparatively modern, and that they may belong to the primitive Gauls, who lived in caverns. This opinion accords well enough with the circumstances of the cavern at Miallet, in which M. Terssier found little figures, fragments of jars, bracelets, \&c. but it will not at all apply to the other localities described, and in which the mixture of bones is so decided.

Great light is thrown by these discoveries on the before ill-explained fact of the occurrence of human bones in the breccias of Cagliari, Nice, Gibraltar, and Tripoli, which contain marine shells, and seem to prove that the level of the sea was once 150 feet higher than at present: the caves generally betoken an equal height of the rumning streams which are supposed to have gradually silted up the caverns.

The shell deposit of Cape St. Hospice, near Nice, also contains broken pottery, and the same has been observed in the bone-breccias of Dalmatia and Syria, which contain human bones, as does the ossiferous sand of Bades near Vienna.
M. Bous' rightly observes that such facts are of too frequent occurrence to allow of explanation on the ground of any accidental introduction during the period to which history extends. They all testify a lowering of the ocean level with respect to the land, caused by the upheavement of the latter, and thus render it evident, that these changes have been in action subsequent to the existence of man on the globe.
M. Tournal and other French naturalists, further suppose that several races of men have successively had possession of our continents: The form of the skulls found at Vienna is stated to approach to the African or Negro type. Those discovered in the fluviatile marl of the valley of the Rhine and Danube exhibit a elose resemblance to the heads of the Karaibs or those of the ancient inhabitants of Peru and Chili. It
is of course in vain to seek in the most ancient histories of these countries for any tradition of the violent commotions which the crust of the earth has endured (as is now proved), since man became its tenant. Geologyalone can seek to unravel the general facts in an uncertain thread of events, through the gradual development of the records carefully treasured incaves and strata, and written in actual symbols of life of less equivocal interpretation than Egyptian hieroglyphics. But the sulject is yet new, the facts limited, and we must be cautioned against coming to any conclusions without the most mature and impartial examiuation. It is to this philosophic caution perhaps that we must attribute the silence of Mr. Conybeare on so interesting atopic, in his report on geology to the British Association in 1832. After alluding to Professor Buckland's acute observatioms on the numerous bone caverns of England and Germany, " which have thrown so much light on the particulars of the history of so many long-extinct races of animals, and proved beyond a doubt that they were originally the inhabitants of the districts where their remains are now found;" he briefly adds, "but still on many questions connected with this curious and interesting subject, especially the relative age of the human bones occasionally found in the same cavern (as at Bize in the South of France), we are bound to compare the opposite views of De Serres, Christol, and Tournal, with those of Buckland, with whom however Desnoyers appcars entirely to agree."

The last edition of Dela Beche's manual also barely alludes to the fact of human bones having been lately found in the same mass with the remains of the extinct rhinoceros and other animals usually discovered in caverns.

We have dwelt at some length on this novel subject, in hopes of drawing the attention of our Indian geologists more zealously to prosecute their investigation of the new field of organic remains now opened to their labours in the clay of the Doáb and the banks of the Jamna. Should it be proved that the bones of man are there really imbedded, and that the animals found with him are (like the elephant of Jabalpur) of the existing Asiatic :pecies, it will form a strong and very important link of connection between the state of things at two distant epochs of our globe, now distinguished as the recent and the fossil periods.

In digging wells in the Doab, or in any part of the upper Gangetic plain, the search for fossil bones at considerable depths should not be neglected, even under the strata of kankar, which occur almost every where in the yellow clay. We might not despair even of finding bones at the lowermost depth to which we have bored in Calcutta, for the yellow clay under the blue alluvial beds contains kankar, and is of the same apparent age as that of the Doáb.

VI.-Further particulars of the Earthquake in Nepal. By A. Campbell, Esq. Assistant Surgeon attached to the Residency.

In pursuance of the attempt made before to note the destructive effects of the earthquake of the 26th August last, throughout the valley of Nepal, and its immediate neighbourhood, and with the hope of shew $i^{\text {ng }}$, as correctly as my information will permit, the probable seat or central point of the commotion, I beg to offer the following memoranda of other places at which the shock was experienced, as well as its comparative degree of intensity at each.

The means of estimating the violence of this phenomenon are of course most defective, if not wholly icadequate to the purpose; but in absence of better data, the ascertained amount of damage done to the frail and perishable works of man, may be received as an index of its intensity at one place, compared with that of another, and in conformity to this mode, it would appear, that the most extreme violence of the shock, as far as its occurrence is as yet known, was expended within a tract of country extending from this side of the great Himálayan range on the north, to the course of the Ganges on the south, and from the Arún river (in the Nepal hills) on the east, to the western branches of the Trisul Ganga on the west, comprising a space of about 200 miles from north to south, and 150 from east to west. In this space, the valley of Nepal, though not geographically the centre point, is most assuredly the portion that has suffered the greatest violence of the calamity; and, unless the inexplicable producing causes have been expended in the frequent and severe shocks that have to this day continued to recur, we may from our experience of the progress of earthquakes in other parts of the world, with reason, as we ought with resignation, look forward to further and more violent exhibitions of the same terrible nature.

In the notice of the earthquake by the Secretary of the Asiatic Society, in his Journal for August, he expressed a belief, that the greatest intensity of the shock would be found to have occured beyond the Himálaya, in the direction of Lassa; and judging by the direction from which the shock was felt to have proceeded, and its intensity in the valley of Nepal, such was the probability, though other has turned out to be the fact, and that upon good authority.

The recentreturn from Pekin of an Embassy from Nepal, to the court of the Celestial Emperor, has furnished authentic information on this subject, which otherwise might have been long wanting; and the whole tenor of it shews that the great Himálayan range itself, and the country
on this side of it, was alone the theatre of the earthquake's presence, and that it was not even in the slightest degree felt beyond a very short distance on the Tibetan side of those huge mountains. The Embassy was at Lassa, on the 26 th of August, when and where the shock was not experienced. At Digarchi, in the following month, it first received accounts of its occurrence from Ncpal ; to the inhabitants of that place the circumstance was known only from reports brought from this side of the mountains; along the road from Digarchi, the answer to all inquiries was the same, "No earthquake on the 26th of August," and not until its arrival at Tingri was it found that the shock had been felt. Tingıí is a small Chinese post, immediately beyond the great Himálaya, and the first stage on the table land (as it is called) of Tibet, going from hence to Lassa, (by the Káti or eastern pass from the valley of Nepal.) From Tingrí to Kirung, a distance of 8 or 10 marches, the route is nearly due west, runuin γ along; and through the northern side of the Himalaya, and throughout this tract, though but thinly inhabited, authentic reports of the occurrence of the shock were received. By Kirung (the eastcrn pass from the valley into Bhote), the Mission penetrated the great range, and at each stage (four in number through the pass), intelligence of the occurrence was communicated by the few individuals who inhabit that wild and sterile region. But such information was not required, as its effects were sufficiently manifest : in the village of Kirung itself, supposed to contain 400 houses, 60 were fairly demolished, and many more seriously injured : two men had been killed under the ruins of their houses, and about a dozen wounded. From the exit of the pass to Kathmandú there are no towns along the route, and scarcely any villages; but at many places, insulated houses of the mountaineers had been thrown down, and the precipitous banks of hills and mountains had been hurled into the suljacent valleys.

This shews the extent of damage done towards the north, and enables us to fix upon the line of Tingri (Lat. 28°) as the northern limit, of the earthquake's presence, and reports would shew that of Jabalpúr and Calcutta to have been the southern one. Rangpar* defines the east and Dehli the west.

North-east from Kathmandú, as far as Drilka and Küti, the violence of the shock would seem to have been greater than in the valley. West from Kathmandú it diminished at every step. At Gorkha, only two houses were destroyed ; at Palpa, none; and at Dotí, on the borders of Kemaon, the shock was felt, but not by any means severely. It will

[^6]be easily broken off, clearly shews how little the abrasion must have been. That however their present site is not their original one, seems now to be further confirmed by the discovery of a bed of fossil shells (univalves reversed), only distant about half a mile, and apparently in a continuation of the same limestone bed as that on which these palm-trees lie*. In the one case, however, the calcareous formation forms the surface soil, whereas in the latter it is covered by 17 feet of hard and soft basalt.

The discovery of these shells was made, as discoveries of the kind usually are, by accident, at the foot of the trap hills beside which the Jabalpúr road runs; a well had been dug some 14 years ago, and with the stones turned out of it a small hut had been erected. It was in a lump of the out-turned limestone deposit (travertine), a large shell was observed, and inquiry discovered the original locale of it to have been the centre of the well; the sides of the well had been built up with red sandstone, and it was necessary to sink a shaft beside it to get at an accurate knowledge of the site. I caused specimens of the different strata to be preserved, at the same time noting their depth respectively : a sample of each stratum, as well as specimens of the fossils, I have had the pleasure of forwarding for the museum of the Society. I am unable satisractorily to determine whether the shells are of marine or terrestrial origin. The opinion here is that they are marine : a striking peculiarity in them is that they are all reversed, and some are much more flattened than others.

The surface soil, (No. 1) as well as Nos. 2, 3 and 4, are well marked, and the transition from one to the other is as abrupt and sudden as the specimens furnished. No. 5 is not so well marked. I have called it wacke. It pervades as a sub-soil a large portion of the trap soil about Sagar. A coarse analysis which I made of some from a well about a mile from the fossil well, gave me

Specific Gravity, 3,600.	
200 parts,	fLoss by drying,........ 34
	Magnesia,.............. 18
	< Alumina,............... 14
	Peroxyde iron,......... 30
	Siliceous sand, 100
	LLoss,..

200

* The annexed topographical sketch (Plate XXVI), which I am enabled to furnish through the kindness of Capt. Macdonald, of the trigonometrical survey, will convey a better idea of the locale of the two sites than any written description.

When first dug out it is friable and has a very gritty fcel, falling abroad on being thrown into water like lime when it is slaking. In the sample I have sent I find several minute nodules of carbonate of lime, which will of course alter the results as given above. No. 7 is a coarse silicious grit, and No. 8 is basalt again. Beyond which I did not consider it necessary to extend my scarch.

I do not venture to offer any hypothesis on the discovery of the above intcresting facts, but content myself by bringing to the notice of the members of the Asiatic Society of Calcutta the singular circumstance of shells in a high state of preservation lodged in a calcareous bed, being found in the midst of volcanic matter. I hope some day to be able to ascertain the limits of the fossil beds.

The following is a section of the shaft :
l. Surface soil, black, 3 feet.
2. Soft basalt, $2 \frac{1}{2}$ do.
3. Hard basalt, 7 do.
4. Soft basalt, $1 \frac{1}{2}$ do.
5. Wacke with nodules of limestone, 3 do.
6. Travertine with inbedded shells, $1 \frac{1}{3}$ do.
7. Coarse silicious grit, 2 do.
8. Hard basalt.
VIII.-Meteorological Reyister at Barelly, in 1831. By II. S. Boulderson, Esq.

May.		Bar. 32°	T. A.	M. B.	May		Bar. 32°	T. A.	M. B.
8	3 P. M.	28.914	102		17	Noon	28.930	100	76
11	$5 \mathrm{P} . \mathrm{M}$.	. 739	106	73.		Sunset.	. 815	100	75
12	- $7 \frac{1}{2}$ A. M.	. 836	81	66		10 P. M. .	. 850	94	73
	350 P . M.	. 803	105	74	18	6 A. M. .	.833	78	63
13	Voon 908	98	75		9 A. M. .	. 847	91	73
	240 P . M.	. 857	99	75		2 P. M. .	. 791	103	72
14	6 A. M. .	. 844	83	70		$420 \mathrm{P} . \mathrm{M}$.	. 756	104	74
	$9 \frac{1}{2}$ A. M.	. 889	92	74	19	7 A. M. .	. 814	92	71
	$5 \frac{1}{2}$ P. M.	. 820	102	75		$9 \frac{1}{2}$ A. M.	. 848	98	76
	10 P. M. .	. 851	92	75		Noon 814	102	77
15	$6 \frac{1}{2}$ A. M. .	. 893	84	$69 \frac{1}{2}$		3 P. M. .	. 752	104	76
	9 A. M. .	. 935	91	73	20	$9 \frac{1}{2}$ A. M. .	. 894	95	75
	Noon 921	98	75		3 P. M. .	. 834	103	75
	3 $\frac{1}{2}$ P. M. .	. 858	103 ${ }^{\frac{3}{2}}$	76		Sunset 815	101	75
	$5 \frac{1}{2}$ P. M. .	. 830	102	76	21	6 A. M. .	. 846	81	65
16	$7 \frac{1}{2}$ A. M.	. 972	89	73		9 A. M. .	. 880	93	73
	10 A. M. .	. 965	96	77		4 P. M. .	. 823	104	75
	Noon	. 965	100	77		Sunset 883	100	$74 \frac{1}{2}$
	4 P. M. .	. 905	102	77		12 P. M. .	. 853	90	68
	Sunset 886	100	76	22	7 A. M. .	. 878	88	70
17	$6 \frac{1}{2}$ A. M.	. 914	86	72		9 A. M, .	. 921	92	73

May．		Bar． $32{ }^{\circ} \mathrm{T}$		M．B．		1831．\quad I	Bar． $32^{\circ} \mathrm{T}$	T．A．	M．B．
22	Noon	28.903	99	74	3	7 P．M．	28.652	98	$81^{\frac{7}{2}}$
	4 P．M．．	． 821	103	76		10륜 P．M．	． 673	96	82
23	6 A．M．．	． 913	82	68	4	$7 \frac{1}{2}$ A．M．	． 779	92	82
	9 A．M．．	． 961	91	72		$9 \frac{1}{2} \mathrm{~A}$ ．M．	． 797	94	82
	3 P．M．．	． 886	102	77		1 P．M．	． 777	100	84
	6 P．M．．	． 851	100	76		Sunset	． 677	100	82
	11 P．M．．	． 882	91	74	5	8 A．M．	． 839	92	82
24	7 A．M．．	． 924	84	72		Sunset	． 721	100	83
	9 A．M．．	． .968	93	75			． 725	97	82
	4 P．M．．	． .876	102	$76 \frac{1}{2}$	6	$6 \frac{1}{2}$ A．M．．	． 823	90	80
25	7 A．M．．	．． 960	84	73		10 A．M．	． 841	94	82
	Noon ．．．．	． 978	102	75		$3 \frac{1}{2}$ P．M．．	． 727	100	$83 \frac{1}{2}$
	Sunset ．．．．	． 880	100	75		Sunset ．．．	． 557	99	82
26	6 A．M．．	． 961	84	74		10즐 P．M．	． 743	94	$81^{\frac{1}{2}}$
	Noon ．．．	． 996	101	78	7	7 A．M．．	． 805	91	80
	Sunset．．．．	． 894	100	75		9 A．M．．	． 857	90	$80 \frac{1}{2}$
27	7 A．M．．	． 971	88	74		$4 \mathrm{P}, \mathrm{M}$ ．	． 757	97	82
	9 A．M．．	．． 976	94	$75 \frac{1}{2}$		Sunset ．．．．	． 273	91	82
	Noon	． 940	102	78		10 P．M．．	． 835	87	78
	3 P．M．．	． .898	104	78	8	$7 \frac{1}{2}$ A．M．	． 899	87	79
	5 P．M．．	． 858	104	77		10 A．M．	． 904	93	$80 \frac{5}{5}$
	10 P．M．．	． .860	97	76		Sunset	． 768	94	83
28	6 A．M．．	． .900	85	73		10 P．M．．	． 829	92	81
	9 A．M．．	． .928	94	77	9	$7 \frac{1}{2}$ A．M．	． .926	81	75
	Noon ．．	． 898	102	79		10 A．M．	． 935	$81 \frac{1}{2}$	76
	11 P．M．．	． 8852	92	71		4 P．M．	． 865	90	80
29	7 A．M．．	．． 855	88	70	14	8 A．M．	． 884	89	81
	9 A．M．．	． .888	94	73		Noon ．．．	． 891	91	82
	7 P．M．．	． .794	100	74		1䂭 P．M．．	． .858	91	82
	10 P．M．．	．． 828	95	71		4 P．M．．	． 804	$90 \frac{1}{2}$	81
30	7 A．M．．	． 8847	88	71		Sunset ．．．	． 800	90	$80 \frac{1}{2}$
	2 P．M．	． 806	102	77 ${ }^{\frac{1}{2}}$		$9 \frac{1}{2}$ P．M．．	．． 802	88	82
	Sunset．．．．	． .755	101	76	15	7 A．M．．	． .803	86	$82 \frac{1}{2}$
31	7 A．M．．	． 814	90	78		9 A．M．．	． .819	$88 \frac{1}{2}$	$82 \frac{1}{2}$
	$10 \frac{1}{2}$ A．M．．	． .845	97	79⿳亠丷厂犬		3 P．M．．	． .707	95	81
	Noon ．．．．	． .745	101	79		$10 \frac{1}{2}$ P．M．	． .732	91	$81 \frac{1}{2}$
	Sunset ．．．．	．． 666	100	79	16	${ }^{\frac{1}{2}} \mathrm{~A}$ ．M．	．． 755	90	2
	11 P．M．．	．． 680	933	78		$2 \frac{1}{2}$ P．M．．	．． 692	98	821
June	ne， 1831.					Sunset ．．．	－． 647	97	83
1	7 A．M．．	． 28.736	89	76		$11 \frac{1}{2}$ P．M．	． .725	92	82
	10 A．M．	． 8851	94 ${ }^{\frac{7}{2}}$	$79 \frac{1}{2}$	17	$7 \frac{x}{2} \mathrm{~A}$ ．M．	． .766	91	81
	Noon ．．．．．	． 742	98	80		9 A．M．．	． .768	$93 \frac{1}{2}$	82
	230 P．M．．	．． 667	102	80		2 P．M．	． 724	$98 \frac{1}{2}$	83
	4 P．M．	．． 634	103	79즐		$10 \frac{1}{2}$ P．M．	． 709	94	82
	6 P．M．．	．． 581	102	78	18	$7 \frac{1}{2} \mathrm{~A} . \mathrm{M}$ ．	． 729	92	83
	8 P．M．．	．． 597	98	78		11 A．M．	． 735	96	83
	11 P．M．．	． 615	96	78		$1 \frac{1}{2}$ P．M．．	． 705	100	82
2	7 A．M．．	．． 712	91	80		3 P．M．．	． 675	101	82
	10 A．M．．	． 758	95	82		Sunset	． 657	98	82
	$3 \frac{1}{2}$ P．M．．	．． 660	101	82		$940 \mathrm{P} . \mathrm{M}$ ．	M．． 713	95	82
	6 P．M．．	． .612	101	81	19	7 A．M．．	． 787	89	81
	10즐 P．M．．	．． 343	96	78		9 A．M．．	． 822	89	82
3	6 A．M．．	． 769	88	79		Noon ．．．．	．． 801	94	83
	9 A．M．	．． 808	92	80		3 P．M．．	． .721	96	83
	Noon ．．．．．	． 8807	98	81	20	8 A．M．	．． 805	87	82
	2 P．M．．	．． 751	100	82		2 P．M．．	．． 777	90	82
	$3{ }^{\frac{1}{2}} \mathrm{P}$ ．M．．	．． 709	100	82		12 P．M．	．${ }^{\text {．} 782}$	87	82

Jun	831.	Bar. $32^{\circ} \mathrm{T}$	T. A.	M. B.		831.	Bar. 32°	T. A.	M. B.
21	${ }^{\frac{1}{2}} \mathrm{~A}$. M.	28.805	$86^{\frac{1}{2}}$	$81 \frac{1}{2}$	25	$2{ }^{\frac{7}{2}} \mathrm{P}$. M.	28.684	87	4
	10 A. M.	. 843	88	$82 \frac{1}{2}$		10를 P. M.	. 713	$85 \frac{1}{2}$	83
	Sunset	. 734	88	81	26	$7 \mathrm{~A} . \mathrm{M}$.	. 767	79	79
	11 P. M. .	. 819	$86 \frac{1}{2}$	$82 \frac{1}{2}$		$9 \frac{1}{2} \mathrm{~A}$. M.	. 825	80	80
22	$6 \frac{7}{2}$ A. M. .	. 833	$86 \frac{1}{2}$	82		Noon	. 825	82	80
	Noon	. 819	95	$82 \frac{1}{2}$		Sunset 813	$82 \frac{1}{2}$	80
	Sunset .	. 761	94	$82 \frac{1}{2}$		$9 \frac{1}{2}$ P. M.	. 812	82	81
	10 P. M. .	. 810	91	82	27	$5 \frac{3}{3} \mathrm{~A} . \mathrm{M}$.	. 813	81	80
23	$7 \frac{1}{2} \mathrm{~A}$. M,	. 817	87	$81 \frac{1}{2}$		$9 \frac{1}{2} \mathrm{~A} . \mathrm{M}$.	. 844	84	
	9 A. M.	. 834	90졸	82		Sunset 758	86	82
	2 P. M. .	. 791	95	$82 \frac{1}{2}$		11 P. M. .	. 794	82	80
	10ㄹ P. M. .	.830	$85 \frac{1}{2}$	$81 \frac{1}{2}$	28	$7^{\frac{1}{2}} \mathrm{~A} . \mathrm{M}$.	. 806	82	$80 \frac{1}{2}$
24	540 A . M.	. 763	84	$80 \frac{1}{2}$		Sunset 683	89	84
	9 A. M.	. 778	85	82	29	8 A. M.	. 759	84	$81 \frac{1}{2}$
	Sunset	. 673	88	$83{ }^{\frac{1}{2}}$		Sunset	. 758	78	77
	10 P. M. .	. 725	86	84		10 P. M. .	. 791	82	$81 \frac{1}{2}$
25	$7 \frac{\pi}{2}$ A. M.	. 707	$86 \frac{1}{2}$	84	30	7 A. M	. 839	82	80^{2}
	$9 \frac{1}{2}$ A. M.	.727	87	84		$9 \mathrm{~A} . \mathrm{M}$.	. 859	81	80

The detached thermometer was in an open northern verandah, the moistened bulb thermometer was inside the house. The barometer was a plain tube with brass scale. The barometer tube was filled with unboiled mercury, and the air gathered and extracted by repeatedly reversing it. In the "Gleanings," for October, 1831, I mentioned the altitude of Barelly, gained from a few observations, as about 1080 feet. I was surprised at the result myself, but could not account for it. I think I must have made some mistake in recording the observations, or perhaps in adjusting the scale to the tube. The barometer with which the above observations were made was precisely similar to the former one, but not the same. A set* of 10 observations in May, compared with those of the corresponding times in Calcutta, gives altitude of Ba reily, feet 742.29 . Another set of 10 observations in the same month, feet 745.58 ; a 3rd set of 10 in the same month, feet 730.32 , and a 4th set of 10 gives feet 755.4 , and a set of 31 observations in June gives, feet 753.35 . With the former tube and scale, a set of eight observations in May, 1830, gave the altitude of the "oaks" at Masuri, 6796 feet above Calcutta; with the same barometer in November, the same

* 1st set of 10	Calcutta Barometer	29.617	Thermometer
	Bareilly	28.94	98.15
2nd ditto	Calcutta	29.560	92.49
	Bareilly	28.833	99.7
	Calcutta	29.599	93.67
	Bareilly	28.885	97.5
4th ditto	Calcutta	29.663	93.7
	Bareilly	28.924	98.7
	Calcutta	29.487	89.9
	Barcilly	28.746	$\mathbf{y 2 . 5}$

year, 15 observations gave the altitude, feet 6777.7, and another set of 10 made .it, feet 6775.1 , and then the latter were taken after a long march in the hills, during which the barometer had been repeatedly refilled. I have a barometer made by Bate, on the principle of Guy Sussac's syphon barometer, with Captain Kater's improvements, (that is the description given of it,) and it seems in excellent order. This stands about .05 higher than a barometer of the above simple make, and filled in the same easy manner as above mentioned. (I should mention that the tubes used have all been of large bore.) But I have no means of discovering the error of either.

The following observations were made at Hardwar, near the centre of the pass, in a house about 150 feet above the bed of the Ganges :

Bar. 32°. Ther.
1833, May 24,

待A. M.	8.216	84
920 A . M.	. 236	96
Noon	. 224	100
2 P. M.	. 182	106
4 P. M.	. 103	104
Sunset ..	. 107	99
${ }_{9 \frac{1}{2}} \mathrm{P}$. M.	. 119	98
Sunrise..	. 153	75
7 A. M.	. 220	83
9 A. M.	. 227	94
Noon ..	. 219	102
2 P. M.	. 187	106

The height deduced from comparison with corresponding altitudes in Calcutta is, from those in the Journal*, 1214 feet above Calcutta, and from those at the Surveyor General's Office, 1276 do.

The latter are more numerous. The mean of these would be about 1245 fect, and if the estimated altitude above the river be deducted, it would leave the height of the Ganges at Hardwar above Calcutta about 1095 feet. The barometer used was, as before, a plain tube, freshly filled with mercury. Though not tried, I suppose the depression of the moist bulb thermometer must have been near 30 .

In elucidation of the remarks on filling barometers when the air is damp, (vide Journal of the As. Soc. ii. 260.) I may record the following experiments made by myself:

On the 12th July last, when the depression of the moist bulb thermometer was $9 \frac{1}{2}{ }^{\circ}$, I filled a tube which stood exactly the same as one filled on the 3rd June, when the air was very dry ; in both these tubes

[^7]the mercury stood about inch .05 lower than that in the English barometer above mentioned.

On the lst August, I emptied the tube which had been filled on the 3rd June ; and refilled it: the results of this and a few more experiments I give below :
1833.

1st Aug. Eng. Bar. Altd. Deld. M. B. Plain tube.

4	P. M.	28.684	$86 \frac{1}{2}$	87	$83 \frac{1}{2}$	28.594
tube fresh filled.						
5	P. M.	.666	do.	do.	do.	.412

.374 tube again filled.
.564 tube wiped out and filled. .552 ditto ditto.
. 626 tube wiped out very carefully.

The tube was wiped with an iron wire, round which silk was bound for about six inches, and on the last occasion, I heated the silk over a fire, and kept up a smart friction in the tube, till I felt a sensible heat from it. I should think that similar results might always be gained. The height at which the mercury stood, after this method of drying the tube, being the same as regards the Eaglish barometer as what it was when it was filled in very dry weather on the 3rd June.

IX.—Proceedings of the Asiatic Society.

Wednesday Evening, the 26th December, 1833.
Captain W. N. Forbes, Engineers, in the Chair.
The Proceedings of the last Meeting were read.-G. A. Bushby, Esq. proposed at the last Meeting, was elected a Member.
A. Hamilton, M. D. Surgeon of H. M. 41st Regiment of Foot, at Moul_ mein, was proposed as a Member by Mr. 'Twining, seconded by Mr. Prinsef.

Messrs. Mackenzee, J. S. Stopford, and Mr. A. Beattie, proposed by Mr. Baghaw, seconded by Dr. Tytler.
A letter was read from M. J. J. Marcel, Ancien Directeur de P'Imprimerie Royale, Membre de la Commission d'Egypte, \&c. requesting to know the result of his application of the 14th July, 1830, and presenting copies of his Translations from the Arabic.

Mr. Marcel was elected an Honorary Member on the 4th January, 1832, but the announcemeut had unfortunately miscarried.

A letter from G. A. Bushby, Esq. Officiating Secretary to Government, General Department, intimating the resolution of the Right Hon'ble the Governor General in Council, that the privilege of franking accorded to
the Secretary of the Asiatic Society, and extending to the Journal of the Asiatic Society, should cease from the 4th June, 1834.

After some discussion, the Secretary was empowered, in any representation he might think fit to make to the Government, on the plea of his engagement to print official documents of a scientific nature, to express the earnest desire of the Society for the continuance of a privilege which has already proved so highly beneficial to the interests and extension of Science in India.

Library.

The following Books were presented :
Marcel's Contes Arabes du Cheykh El-moudy, for July, August, September, October, and November, 1832, and February, March, April, and May, 1833-ly the Author.
Journal Asiatique, 64, 65-by the Asiatic Society of Paris.
Abdul Mujeed's edition of the Seyr-ul Mutakhereen, 1 vol.-ly the Editor.
Sixth volume of the Transactions of the Medical and Physical Society-by the Society.

Select Speeches of John Serjeant of Pennsylvania-ly Herainbanath Thakoor.
The following works, published under the auspices of the General Committee of Public lnstructions, were forwarded by the Secretary, Mr. J. C. C. Sutherland.

Inaya, vol. 4.
Kefaya, vols. 3 and 4.
Aphorisms of Hippocrates.
Sudeedee.

Fatawa Alemgiri, vol. 4.
Raghuvansa.
Retnavali.
$W_{1 L s o n ' s ~ S a n s c r i t ~ D i c t i o n a r y . ~}^{\text {a }}$

Meteorological Registers from July to November, 1833-by the Surveyor General.

MS. Register of the Weatler at Jorhat, Assam, for the months of August and September, 1833-by Mr. H. Bigge.

The following books were received from the book-sellers :
Lardner's Cabinet Cyclopedia, Herschel's Astronomy.
Chronology of History.
Read an extract of a letter from Captain J. B. Jervis, Bombay Engineers.
The letter announces, that the writer is engaged in the publication of a systematic account of the weights and measures of India, to which is annexed an account of Indian Chronology, gleaned from the Vedas, Siddhantas, Puránas, \&c. and brought into one view with the systems that lave prevailed in all ages over the world. Whence he has deduced that all lave a common origin, and that the neasures of time in use among the Hindus were introduced so late as A. D. 607-8. The work is in octaro, 700 pages, and is now nearly through the press. It is to be published by subscription.

Resolved, that the prospectus be circulated among the members, and a list of subscribers returned to Captain Jervis.

Antiquities.
A large Lingam, from the Jangíra rock-presented by Lieut. T. S. Burt, Engineers.

An ancient Hindu gold coin (corresponding with No. 17 of Wilson's plates, As. Res. xvii.) was exhibited to the meeting-by the same.
Accurate drawings of the stone lath or column now lying in the Fort at Allalabad, and fac similes of all the inscriptions on it; and a small fragment of the stone-by the same.
A paper on the subject, by Lieut. Burt, was read.
A talwar, or native sword of iron, dug up from six feet under the bed of the Jamna river, was also presented by the same.
The weapon is of the modern form, and was probably lost with some wreck; it was corroded ncarly through its substancc.

A manuscript table exhibiting the particulars of the twenty-four Jinas of the Budh religion, drawn up by a Pundit at Hyderabad-presented by Mr. E. C. Ravenshaw.

Museum.

A piece of planking and copper sheathing, from the bottom of the Barque Adele, pierced by the horn of an unicorn fish, on her voyage from Penang to Akyab, on the 2tth January, 1833-presented by Dr. Twining, on the part of Dr. Baker, Civil Surgeon of Noacolly.

The following extract from the log of the vessel was read :
Lat. $y^{\prime \prime} 23^{\prime} 53^{\prime \prime \prime}$ north, Long. $96^{\circ} 31^{\prime} 45^{\prime \prime}$ east, at 8 ll . 3 m. P. m. of the 24 th Jan., fclt a sudden very sevcre shock aft, which made the ressel shake: could not account for it.
26th January. Found the vessel lcak slightly, in consequence as supposed of the shock.
12th February. Lying at Akyab ; cleared away sand-ballast, to examine the cause of the leak. Found a reut in the ship's bottom, caused by the horn of an unicorn fisl thrust throngh the copper sleathing, and four incles of planking ; the horn protruded seven inclies on the interior, and had been snapped off close to the copper on the outside by the strugyles doubtless of the animal to disengage itself.

Edward Marguard, Commander."
A stuffed Pangolin, or five-toed Manis-presented by Dr. Burlini.
Two tigers' heads; the skin of a Boa Constrictor, 14 feet long ; two stuffed lirds ; two triangles, ornamented with peacock's feathers; an Assamese hat, and other Curiosities from Assam, were presented by Dr. Burilini, in the name of M. B. Bianchi.

Further specimens of the Hoshungabad coal were received, from Captain J. R. Ouseley.

Althongh of a better quality than the former specimen, (see page 485,) this slaty coal is still very inferior, being in fact little better than a bituminous slate; its composition agrees nearly with that of the specimen inserted in the table of India coals, page 283 of the Gleanings, vol. iii.

Specific gravity$\left.\begin{array}{rl} \text { Composition :- } & \text { volatile matter } \\ & 34.0 \\ & \text { Carbon. } \\ & \text { Rcd earthy ash } \\ 26.7 \end{array}\right\} 100.0$

It burns with a good flame, and leaves a slaty ash.

Specimens of the fossil bones, kankar, and rocks extracted from the bed of the Jamna-by Lieut. T. S. Burt, Engineers.
These form a valuable addition to the fossils presented in the name of Captain E. Smith at the last Meeting, and they contain the following bones not found in that series:
14. Fragments of the tusk of an elephant : one piece of very large size. The patella or kneepan of ditto.
13. Teeth of the camel ?
15. Tooth of a horse.

Part of the jaw of a human skull, and one other bone, were evidently recent, burning hefore the hlowpipe, \&c. whereas those in the fossil state did not contain the slightest trace of animal matter, and were of much higher specific gravity than ordinary bones : the animal matter seemed principally replaced by carbonate of lime and clay iron. Drawings of the three teeth, marked as above, $13,14,15$, have been inserted in the Plate of Captain Smith's collection, (Pl. xxv. of the present number.)

Lieut. Burt also presented a collection of nine species of shells found in the bed of the Jamna at Kárim Khán.

Captain E. Surrtr's notes on the kankar formation, and on the fossil bones, collected in the Jumna river, were then read.

Also a letter from Dr. H. H. Spry, on the subject of the fossil shells, presented by him at a former Meeting.
[Both of these are printed in the present number.]
A map of a route from Hoshangabad to the Fort of Makrai, in the Kalíbhit hills, was presented in the name of Lieut. R. H. Miles, with remarks on the Goand inhabitants, and on the features of the country, by the same officer.

A note on the climate of the fossil elephant, by the Rev. R. Everest, was read.
[These will be printed in an early number.]
Thanks were voted for the several contributions of the evening.

X.-Miscellaneous.

 [omiginal communications.]1.-Note on the Tailor Bird's Nest. By Lieut. Gifford.
" I send you a tailor bird's nest along with the Journal of the Asiatic Society, in which I see a description is given of it. This is the third nest I have found ; the first one was built in a banghen bush; the two last in a low thick shrub (name I know not,) but the natives make a reddish dye from the flower, which is a very light yellow colour, with pretty large leaves.

The specimen I send you was constructed of three green living leaves, with two small old (dry) ones, to fill up a space where the living ones would not neet. The leaves were sewn together with raw and spun cotton; the bird is a light brown above, and a dirty white helow, about four inches in length from tip of bill to end of tail : the málís call the bird Phutht."

2.- Note on the Instription on the Hindu Coin. (Pl. VIII. Fig. 15.)

At page 415 of the present volume I stated, that the characters of the inscription on the reverse of the ancient gold coins of Hindu fabrication from Kanouj, represented in fig. 15, and in several coins of Plate I. vol. xvii. Asiatic Researches, was not legible. Mr. Wilson bad however suggested, that the three first letters agreed with the ancient Nagarí characters पाक, and I find on referring to Dr. Babington's Account of the Inscriptions and Sculptures at Mahamalaipúr, that all of the letters may be unquestionably identified with the ancient Sanskrit characters of the Ratha sculpture, so ably decyphered by that gentleman, and of which he has given a complete alphabet in the same volume.

The first letter is probably \& rather than म or प्र although as observed by Dr. Babington, these letters are very similar in form ; the fourth letter is $\boldsymbol{\mathcal { H }}$ and the whole word thus restored becomes clearly साकम: but the meaning is still as hidden as ever; and if it be a proper name, none such is to be found in the catalogues of Hindn princes.-Ed.

> 3.-Radiation in Valleys.

Mr. W. Cracroft, in 1832, made the following observations for several mornings at sun-rise, in passing over the Kasya hills, on the radiation of heat to the sky.

Date.	Place.	Thiprm. suspended.	$\begin{aligned} & \text { Therm.on } \\ & \text { straw. } \end{aligned}$	Remarks.
13	Surárím,	38°		
14	Mouflong,			5 ice formed in a tumbler in the house.
15	Myrong,	27	24	
16	Nanklao,	39 31		at top of hill, brisk wind, at bridge, in valley, 130 feet lower.
17	Ditto,	$\begin{aligned} & 33 \\ & 30 \end{aligned}$		at top of hill, little wind. at bridge below.
18	Ditto,	$\begin{aligned} & 42 * \\ & 28.5 \end{aligned}$		at top*, six inches above the ground. 5 at bridge, ditto
19	Ditto,	49 27		on top of hill on a mat, ice within six inches of bulb, out all uight!(?) at bridge.
20	Mopea,	$\begin{aligned} & 43^{*} \\ & 3 . \end{aligned}$		at top of hill*, two feet raised. at bottom of valley, 80 feet below.
21	Ongshye,	37.5	37.5	heavy dew, same on straw.
22	Ránígaon,	$50 \pm$		$\ddagger 4 \mathrm{ft}$. from ground. + In a ditch 2 ft . dp

From the above, it may generally be remarked, that the bottom of a valley is much colder than the top of a hill at night ; although the latter must be much more open to radiation : aërial currents may be the cause of this apparent anomaly.

4.-Bones in the Delta Alluvium.

In the Report of the Asiatic Society's Committee on the boring experiment an observation occurs, tbat some bones were discovered in the strata of blue clay allu$v_{\text {inm }}$ of the circular canal, at a depth of about 20 feet below the surface : on reference to some old papers in Mr. Wilson's possession, a nemoranduin has been met with of a similar fact obscrved on digging a tank at Dumdum, in the year 1813. Lieut. J. Colvin, Engincers, describes the circumstance as follows :- "The soil is throughout a fine garden mould, from two to three feet thick:- there are no nálás visible, but Dumdum is nearly surronnded by jhils and salt-water lakes. The bones form a kind of regular line with some intervals of a foot or two between them; they lie pretty close together, their interstices filled with earth. They are
so soft that all but the thickest bones break on endeavouring to separate them from the earth. I cannot say to what animal they belong, but I am very sure there are now no animals at Dumdum to which such large bones could have belonged, and I have never heard of any kind of deer near the place. The tree was found at a depth of 18 feet below the ground; it seems to be Soondry, (as is the case with most of the wood found in similar situations elsewhere.)"

We hope when a deposit of bones is again found, either at Dumdum or in any other parts of the Delta, some pains will be taken to extract them carefully, for comparison with existing species of the inhabitants of the present Sunderban swamps and forests; for, although, geologically speaking, they are of rery modern origin, and we trace in the names of villages considerably higher up the Delta the fact of the present continent having at one period been divided into islands: suclıas Agardwíp, Sukhsagar, \&c. Still at the present observed rate of recovery of flooded Sunderband land, it appears to require a very lengthened process to fill up from 18 to 25 feet of alluvium over the peat stratum, which was eridently the Sunderban vegetation of the time. History lends no aid in defining the sea boundary at different cpochs. We must therefore seek the aid of physical research to solve the interesting question of the growth of the Dclta.
J. P. .

> 5.-Fall of Fish from the Sky.

The phenomenon of fish falling from the sky in the rainy season, however incredible it may appear, has been attested by such circumstautial evidence, that no reasonable doubt can be entertained of the fact. I was as incredulous as my neighbours, untilI once found a small fish, which had apparently been alive wben it fell, in the brass funnel of my pluriometer at Benares, which stood on an insulated stone pillar, raised fire feet abore the ground in my garden. 1 have now before me a note of a similar phenomenon, on a considerable scale, which happened at the Nokulhatty factory, zillah Dacca Jelalpur, in 1830.

Mr. Cameron, who communicated the fact, took the precaution of having a regnlar deposition of the evidence of several natives who had witnessed the fall, mede in Bengalee, and attcsted before the magistrate : the statement is well worthy of preservation in a journal of science; I therefore make no apology for introducing a translation at length. The shower of fish took place on the 19th February, 1830, in the neighbourhood of the Surbundy factory, Feridpoor.
J. P.

Deposition of the Witnesses to the Fall of Fish from Heaven, on the 9 th of Phalgun, 1236, B. E. at Havelli, zillah Dacca Jelalpur.

1. Shekh Kitabuddin, son of Shabdi, and Shekh Shumsuddin, son of Bakshu, were called, and declared in their deposition, saying, "Tlat on Friday, in the month of Phalgun, we do not recollect the date, at 12 o'clock p. m., the sky being cloudy, there was slight rain, and a number of fish of different kinds and sizes fell from heaven; we took some of these fish and retired home. This is the account which we know."
2. Shekh Sulimuddin, son of Ibadullah, inhabitant of Bibhagdi, declared in answer, saying, "On a Friday, in the month of Phalgun, the date of which I do not recollect, at 12 o'clock evening, while I was coming from a village nanied Nukolbath, I perceired a badall fish, large about one cubit, fall before me from the sky; after which, I went further, and found another fish of the same size, lying upon the ground. I picked up these two fish and proceeded forward; and as soon as I arrived at home, I found, to my great surprize, that many persons had likewise collected fish, and carried along with them. This is all, and I know no more.'
3. Shekh Manirnddin, son of Mydi, inhabitant of Unerbati, expressed in his deposition,-"About 12 o'clock P. M. on Friday of Phalgun, the date of which I have forgot, the clonds being gathered together, began to rain, and a little after, many fish, lurge and small, began to fall from the sky. I picked up some of them and carried to my house, bat I did not like to taste any of them. I know no more of this account."
4. Fakirchand Chang, inhabitant of Nagdi, was called in, and declared in his deposition, "That in the month of Phalgun, the date and day of which have escaped my memory, at 12 o'clock P. m, the sky began to be cloudy, and to rain little; while I was sitting in the front part of my cottage, I observed a mirgal, and some other fish, bodulis, \&c. of different size, fall from the sky. I picked up about five or six of these fish to satisfy my curiosity, but afterwards threw them away, and did not eat them at all. This is my account."
5. Shekh Chaudhari Ahmed, son of Matiullah, inhabitant of Nagdi, relates in his deposition, "That I had been doing my work at a meadow, where I perceived at the hour of 12 o'clock, the sky gather clonds, and began to rain slightly, then a large fish touching my back by its head fcll on the ground. Being surprised, I looked about, and bchold a number of fish likewise fell from heaven! they were saul, sale, guzal, mirgal, and bodul. I took 10 or 11 fish in number, and I saw many other persons take many-then I returned home, I looked at heaven, and I saw like a flock of hirds flying np, but these my perceptions was not clear enough. Amongst these fish, many werc found rotten, without heads, and others fresh and perfect ; and amongst the number which I had got, five were fresh, and the rest stinking and headless.
6. Shekh Turikullah, inhabitant of Nagdi, 12 years of age, declared in his deposition, "That in the month of Plalgun, on a certain Friday, I do not recollect the date, while I was sitting in my own house, I perceived a number of fish fall from the sky, some of them on the roof of my cottage ; one of them was large, about one cubit, and three seers in weight. I know no more."
7. Shekh Sucluruddin, inlabitant of Nagdi, was called in, and declared in his deposition, saying, "On Friday, at 12 o'clock P, m. in the month of Phalgun, I do not recollect the date, when I was at work in a field, Iperceived the sky darkened by clouds, began to rain a little, and a large fish fell from the sky. I was confounded at the sight, and soon entered my small cottage, which I had there, bnt I came out again as soon as the rain had ceased, and found every part of my hut scattered with fish, they were boduli, mirgal, and nouchi, and amounted to 25 in num-ber.-I know no more."
8. Shekh Katbuddin, inhabitant of Nagdi, relates in his deposition, saying, "At 120° clock P. M. of Friday of Phalgun, the date I forget; as I was coming fromi the fields, I saw a number of fish spread on the bank of a nála. I picked up six of them, viz. two boduli, two mirgal, and two nouchi, hesides these, there were many other fish of numerous kinds, and they were witnessed by many persons who were there. Some of these fish were fresh, but others r otten and without heads. I know no more."
9. Sree Dipcliundı in Bundopadhya, son of Puncharam Bundopadhya, inlabitant of Sobindi, aged 45 years, declared in his deposition, "That in the month of Phalgun, I cannot recollect the date, seeing the sky commenced to gather clouds, I sat down near the door of a workınan's cottage; it was then precisely 12 o'clock, when a drizzling rain began to fall; and at the same time, two boduli fish fell down from heaven. I soon got up nd marched on, and in the midst of the road,
saw several other fish fallen before me. I picked up some of these fish-but one named Banchla Ram Chung forbade me, saying, 'Do not touch these fish; yondo not know what fish they are, and how they have fallen here.' Listening to him, I threw away all the fish, and went away. This is my account of the fish."
[Several other depositions of those who were not immediately eye-witnesses are omitted.]

> 6.-Fossil h ells near Irerat.
[Extracts of a letter from Dr. J. G. Gerard, dated Herát, 21st June, 1833.]
"I have discovered the locality of a large deposit of organic exurix within thirty miles of this place (Herát), hut have not thought it prudent to visit the spot, lest I sloonld find myself unexpectedly in the hands of the Túrkomans.
"The fossils correspond to the species represented as Pecten,-they abound in the side of a mountain, which is evidently calcareous, but are especially found in a water-course, being rolled from their situs by that agency. Judging from the eleva-
 barouteter stood then at $30,000^{*}$ the locality of the fossils may be deduced at a height of between 3 and 4000 feet. Elevation in such objects has ceased to he interesting, since the new theory of subterranean projection has deprived it of a miraculous aspect. Monsieur Jaquemont when at Simla, read to me (explained) a letter he had received from another traveller, Mons. Elie de Beaumont in South America, I think, wherein it was mentioned, that there was a subterranean connexion betwixt the most distant mountain ranges, and that a simultaneous inovement was actually going on (traceable) by which their masses were gradually elevated."
7.-Cochineal.
"I hear the Cochineal insect is here, but not appreciable, that is, it cannot be turned to account, from the inability of the people to dry it properly; this is at least one cause. I have been asked the method of its preparation, but all my knowledge extends to a faint recollection of the process adopted by the South Americans, treated of in Humbolnt's published Account of New Spain. Artificial heat is there used to kill the insect. Query, may not the very mode of extinguishing life affect the properties of the colouring matter? Certain it is, that in preparations of insects, this is so much a necessary precantion that various gases, the air-pump, \&c. have been resorted to for the better preservation of the hues and form of the specimens. Do we not know that there is virtue in the manner of killing animals for our daily aliment ?-that the anatomist can readily discorer the effects of disoxygenation (in suffocation) upon the blood and even the muscular fibre, that electricity (lightning) and the Simoom not only change the color, but produce decomposition of animal matter when their effects are fatal. I don't remember what Humbonnt says on the sulject, but the complaint here is, that the insect cannot be killed without adegradation of its virtues. It is found in the root of a plant that flourishes in a marsh, and many people here have exhausted their skill in endeavours to appreciate its value : most of what reaches Herat is imported from Bokhara where it is received from Russia, and I helieve from Yarklund; the latter need not surprise us if indeed the insect is an inhabitant of that country; the industry and artificial expertness of the Chinese almost lead us to the conclusion.
A species of Cochineal, or at least a substitute, is found in India, but I suspect that the mercantile article is an import from South America. As climate has such

* As the observation was made in June, when the sea barometer would stand at 29.5, the altitude may be more correctly assumed to be 2,000 feet. See page 199.-Ed.
an effect upon the productions of animal and vegetable existence, and an arid one towards the improvement of a great many of them, especially Horticultural, while the softness of the goats' fleece seems to owe its existence to that cause,-the silkworm its superior procreative powers, and even the silk its finer structure;-the cats of those regions, Cabul espccially, are well known;-when these and thousands of others are the effects of thosc bright and eternally blue skies, we may infer that the kírmes (Keerm, wornı), or cochineal of Herát, Bokhara, and other places requires only the application of skill to render it an apprcciable commodity, and even supcrior to the American species, except indeed that comes from the dry regions of Chili and Peru. The bazar (retail) price of Cochineal at Herát is now six Rs. per seer, country measures, or 32 St . Rs. per Indian seer. The moist opimm of the place sells at 44 Rs, per seer of India, and after one year when it is pretty dry, at 70 Rs. ! while a species that comes from Yezd and Kaín in Persia, in sticks like sealing-wax and as brittle as a dried reed, sells at the enormous price of 80 to 100 Rs. per Indian secr. At Bokhara I procured some at 90 Rs. methinks the Hon'ble Company's opium from Malwa at a productive cost of three Rs. per seer, would realize remunerating profit in this country, where every production of nature or art is so exorbitantly bigh-priced, (valuable.)"

8.-Reply to the Questions of the Burmese Philosopher-Prince.

Sir,
Having not yet seen, in your interesting Journal, any replies to the questions proposed by the Burmese Prince, in vol. ii. p. 47, I venture to send you the following for insertion, and hope they may be found satisfactory.

Investigation of Sir Isaac Newton's statement, that some Comets have been raised, by the effect of the sun's rays, to a heat, 900 times greater than that of red hot iron.

Reply to 2nd Question.

It is a well known fact*, tlat the force of heat varies, inversely, as the square of the distance of the direct cause of that heat, from the object affected by it ; so that in order to determine the above point, it is only necessary to refer to the distance of the sun from the earth (95 millions of miles), where the measure of force of his rays is known, and having the distance of a Comet from the sun, to ascertain by the above rule, the degrees of heat to which the Comet has been raised, and then with the aid of Wedgwoon's, or any other pyrometer, shew, by calculation, the excess of beat of the Comet over that of red bot iron for the answer.

In Newton's Plilosophy by Maclaurin of the ycar 1748, page 373, it appears, that the Comet of 1680 approached 166 times nearer to the sun, than our earth is; let this Comet therefore be taken for the investigation.

Now the distance of the earth from the sun, $95,000,000$ miles divided by 166 times is $=572,300$ miles, or distance of the Comet from the sun; consequently, by the abore rule inverse, as the square of $572,300 \mathrm{viz}, 327,527,290,000 \mathrm{miles}$ to 100 degrees of beat here, so is the square of $95,000,000$, or $9,025,000,000,000,000$ miles, to $2,750,500$ degrees of heat of the Comet.

The degrees in Wedgwood's Pyrometer, are reduced to their equivalent in Farenheit's thermometer by multiplying them by 130 , and adding 1,077 ; becanse each degree of the former, is equal to 130 of the latter, and Wedgwood's first degree commences at Falurenhcit's 1077 th, (vide Fyfe's Elements of Chemistry of

* Vide Ferguson's Astronomy, of 1790, p. 88.

1827, vol. I. p. 19.) Assume 100° of Farenheit, for the measure of the heat expericnced on the surface of the earth, by the direct influence of the sun's rays.

It is stated in the work above quoted, that silver melts at 22 degrees of Wedgwoon, and as I am not at present exactly aware, at what degree of heat iron becomes red hot, I will assume that of silver, just going into a state of fusion, instead of it*.

Silver melts at 22° of Wedgwoon, and 22 multiplied by 130 plus 1077 , equal $3,937^{\circ}$ of Farenheit*, therefore, the degrees of heat of the Conet, 2,755,500 divided by $3,937^{\circ}$, or heat of melting silver, will make the heat of the former, 700 times \underline{q} reater than that of silver going into a state of fusion.
(Macbaurin, without investigating the trith of the remark, says, the Comet conceived a heat, 2,000 times greater than that of iron alınost going into fusion. This must be a mistake, for I find that iron fuses at 158° Wedgwood, $=21,617^{\circ}$ Farenlieit, so that, using this as a divisor, instead of $3,937^{\circ}$, we obtain only $127 \frac{1}{2}$ for the number of times excess of the Comet's heat, over that of iron in a state of fusion).

For gold under the same circumstances, $32^{\circ} \mathrm{W} .=5,237^{\circ} \mathrm{F}$., at which it melts : therefore $2,755,500^{\circ} \div 5,237=526$ times excess of the Comet's heat over that of gold in a state of fusion.

Tin melts at 442° F. (Fyfe, vol. II. p. 35,) therefore $2,755,500 \div 442=6,234$ times excess of do. over tin. (But at page 21, vol. I. Fyfe says tin melts at 644 F., therefore $2,755.500 \div 644=4,278$ times do. do).

Copper melts at 30° Wedgwood $=4,977^{\circ} \mathrm{F}$., therefore $2,755,500 \div 4,977=554$ tincs for the excess over copper, in a similar state.

Lead at $612^{\circ} \mathrm{F}$.; therefore $2,755,500 \div 612=4,502$ times of same over lead in fusion.

I believe Sir Isaac Newton's mode of measuring the quantity of caloric, in heated bodies, was, by their rate or time of cooling, to a degree equal to that of the surrounding medium.

It does not, however, so far as I can see, follow, that the interior, to the very centre of the comet, becomes lieated by the sun to so great a degree, as is here indicated, and which affection applies to the surface particularly, for, the time that the Comet is exposed to the sun's rays, its rate of motion being increased in proportion to its proximity to the sun, (so as always to describe equal areas in equal times, would probably be of insufficient duration, for so large a body to conceive, to its centre, this immense degree of heat; for, the comet has, no donbt, its seasons, and days and nights, as well as the earth, and much free space, almost void of the sun's heat, or even his light, in which to lose its caloric.

Since writing the above, I see by Mr. James Prinser's experiments in the Asiatic Journal, vol. ii. page 140), that iron heated "uniformly to a glowing red," measured 1609° of temperature, Fahrenheit ; if this be used as a divisor, instead of the former denominator, for the melting silver, we shall obtain as follows : $2,755,500 \div 1609=1712.554$ times excess of the Comet's beat over that of red hot iron.

It is evident, that this amount must flnctuate, in exact proportion to the number of degrees, assumed for the measure of the sun's heat, as felt upon this globe, and which I have taken at 100°; but it appears that the sun's heat at Montpelier, raised Amonton's thermometer, on one occasion, to the height of boiling water, or 212° Fahrenheit, (see Hutron's Math. Dict. of 1815, p. 640). This would increase the

[^8]above amount (by 2, 12 times) to 3,630 times, but taking the general average heat of the air, in the shade, in hot countries, at 70° only, the anount would be 7 -10ths of the above, $=1200$ times nearly; while for England, assuming 50° as a mean, we have one half of the $1712=856$ times excess of heat of the comet of 1680 , over that of iron raised to a glowing red : this is tolerably near the 900 times mentioned by the Burmese prince; but the medium heat of air, out of doors in the shade in England, is about 51.4 ${ }^{0}$, so that, multiplying 1,712. 5.54 above mentioned, by $51.4=514$ we get $880 \frac{\pi}{4}$ for the excess of heat, differing only by $19 \frac{3}{4}$ from the answer sought : but we get it nearer, by using the 100 dth . part of the mean licat of the thermometer, out of doors, $=51.4$ and of that within doors, 52.9 mean $=$ 52-15 instead of the last mentioned . 514 dth., for we lave 52.15 for the multiplier of $1,712,554$, and the product is 893 times, instead of 900 as desired, and lastly, it becomes still uearer, viz. 905.9 times, by using the mean heat within doors or $52^{6} .9$ as above. This with, I trust, be considered sufficiently near and satisfactory. (N.B. It is equal to the quotient of $(95.000000),{ }^{2} \times(572,300)^{2} \times$ by $\left.\frac{52}{160} 9\right)$.

Afer the above was written, I found in the lst volume of the Gleanings of Science, page 96, that Mr. Prinsep has noticed the little reliance which is to be placed on Wedgwood's Pyrouteter, the degrees of which I have used in the former calculations: this will not, however, affect the answer last given, viz. 905.9 where I have quoted that gentleman's own experiment, so that the statement is left nearly as I had at first written it; but as the neasure of temperature, of some of the metals there shewn, differs considerably from the corresponding ones here noted, it is right to state, that in that work the metals are represented to melt, at the undermentioned degrees of heat :

The degree of heat of the comet above fusing silver, \&c. will therefore be as follows, taking 100° for our temperature :

Correction.

Instead of $2,755,500$ as a numerator, on the assumption of 100° being the heat on the earth, take the medium heat, as before, $52^{\circ} .15$, and the quotient of $95,000,000^{2} \div 572,300^{2}=$ or $1,436.990$, and divide it by the degrees of the metal, thus;

Than silver fusing, the comet is 308 times hotter, by using Wengwood's degrees 4,777,

For iron raised to a full red heat, ($1,200^{\circ}$, according to Prinsep, $1,436,990^{\circ} \div$ $1,200^{\circ}=1,197.5$ times, by using Prinsep's degrees.

For do. raised to an orange heat, 1650° P. $1,436,990 \div 1,650=870$ times by ditto.

Reply to 3rd Question.

I almost fear to venture an opinion on the next question, but I should say, that the atmosphere is certainly, as the querist supposes, attracted, by the sun and moon, when in conjunction, or opposition, in the same manner, as are the tides of tbe ocean, or as any other light fluid, would be; but why tbe barometer is not sensibly affected, at these periods, I can only ask, whether he is sure that it is not so affected, or so much, at least, that a fair conjecture may be hazarded, that its rise is proportional to the increased height of the atmosphere, (if such indeed occur, at the time of high tides,): our purpose will, therefore, be to see, whether the barometer can indicate this rise, or not, and if it do, to determine, what the amount of that difference is.

May not one objection however be made, that will have a tendency to controvert tbis opinion, which is, that the force, exerted by the moon or sun, or both, to elevate the atmosphere, above its usual level, might, on account of tbe elasticity, or buoyancy of this body, destroy the additional weight, that would, otherwise, be added to it? In other words, would not the force of attraction, here supposed to cause the additional height, by the hold, (if I may say so,) tbat it has on the fluid, keep it in equilibrio, without adding any thing to the weight, by the increase of the part so added?

This remark will not, of course, apply to water, but will it not to air, wbich is an elastic body ? If not, then I must resort to the first supposition, tlat there is a rise of the barometer, and that it is proportional to the increased height of the atmosphere, caused by the attraction of the sun and moon.

If the height of the atmosphere were uniform, and of the same weight, as it is at the earth's surface, pressing about l4 14 lbs. on the square incb, it would extend no farther than to the height of $5 \frac{1}{4}$ miles, or thereabouts, (see Hutron's Course, p. 244 , vol. ii.) whereas it reaches to between 40 and 50 miles, (the boundaries of twiligbt only included, the air being so thin and attenuated, beyond that distance, that its comparative weight amounts to almost nothing).

Now, if the height of the atmosphere be increased, by any cause, (excluding heat, which would, however, have something to do witb that increase, but has or has not to do with this investigation, beyond the height of 45 miles, a proportional part must be reduced, in height, on the sides of the earth, which are at right angles to the horizon, acted upon by the sun and moon, to make up for this quantity, unless it be rarefied and of itself kept in equilibrio by attraction, as above supposed : it cannot be very great, but supposing it to be proportionally raised, as much as the sea, what will be the pressure gained, in this, upon one square inch, at the surface of the earth, and also, at what height will the barometer stand, in this case ?

Taking 123 feet, which is about the height of the tides, or what is added to the ocean, by the attraction of the sun and moon, either when in conjunction or opposition, and assuming $\frac{5}{3}$ of a mile, or 1760 feet, as the average depth of the ocean, of which $12 \frac{3}{3}$ feet is near the 138th part; by taking the 138th part of the atmosphere's height of 45 miles, as above, we get .326087 parts of a mile for the additional height of the atinosphere, gained by the force of attraction, consequently, if 45 miles press upon the surface, with a weight of $14 \frac{3}{4} \mathrm{lbs}$. per square inch, 45.326,087
miles will press with a weight of $14.856,884,072 \mathrm{lbs}$ on every square inch，and then to get the height in inches，gained by the barometer，we have $14 \frac{3}{4} \mathrm{lbs}$ ．to 30 inches， （or general height of the barometer at the level of the sea nearly，）as $14.856,884,072$ lbs．to $30.217,4$ inches nearly，or $.217,4$ decimal parts，rather more than $\frac{5}{5}$（h of an inch only for the measure of height，gained in the barometer，by the additional weight of the 138th part of the total height of the atmosphere，caused by the attraction of the sun and moon，in a similar manner，and in the same proportion， as the tides are raised above the level of the sea．

Very nearly the same answer is obtained，by considering the atmosphcre so con－ densed，as to have its specific gravity cqual to that of water；for，instead of the former height in miles，use $3 \frac{1}{2}$ feet heigbt of water，which is equal to the pressure of the atmosphere，and higher than which a common atmosphere pump will not raise that fluid．Then $34 \frac{1}{2}$ fect divided by 138 as before is $=.25$ of a foot，therefore 34.5 feet height of water ： 14.75 lbs ．pressurc on the square inclı $:: 34.5+.25$ ，（or height of water plus its 138 th part $=34.75 \mathrm{lbs}$ ．）： $14.856,876 \mathrm{lbs}$ ．pressure on a square incb，only exceeding the former $14.856,884,072$ by the $.000,008,07$ 2nd part of $\mathfrak{a l b}$ ．and proving the result of the former calculation to be correct．

In the abore investigation，the specific gravities of air and water are taken as equal，but as they differ much＊，and as I bave no other data，let the height of the atmosphere be considered uniform，for $5 \frac{1}{4}$ miles only，as before explained；the calculations will，on the foregoing priaciple，make the height，gained by the baro－ meter，equal to only $\frac{1}{56}$ th part of an inch，which is almost an inperceptible quan－ tity，and shews，that that instrument cannot scusibly indicate the difference of altitude of the atmosphere，due to the attraction of the sun and moon，as sup－ posed by the Burmese Prince；for $5 \div 138$ miles＝． $003,804,347,8$ th part of a mitc， when the atmosphere is uniform，and $5 \frac{1}{4}$ milcs high，therefore，as 5.25 miles： $14.75 \mathrm{lbs} .:: 5.25+.003,804,347,8$ milcs $:: 14.760,688,105,7 \mathrm{lbs}$ ；and again， $14 \frac{3}{4} \mathrm{lbs}$ ． $: 30$ inches $:: 14.760,688,405,7 \mathrm{lbs} .: 30.021,739,125$ inches，or $.021,739,125=\frac{1}{5}$ th part only of an inch gaincd in height by the barometcr as above stated．

I subjoin a table of the heights of the barometer，in order that the differences， which I have＂shewn，for every month，may be observed，at the times of spring and neap tides，in Calcutta，for the satisfaction of the Burmese philosopher，should he think it necessary，to prosecute his inquiries any further into this subject．
Barometer at Sunrise，（reduced to 32° F．），at the Surveyor General＇s Office，Cal－ cutta，taken from the As．Soc．Journal，vol．1，for the year 1832.

1832.	Means．In．	Monthly 1）iff．	Temperature of Air．	$\begin{aligned} & \text { Monthly } \\ & \text { Difference. } \end{aligned}$
January，	30.0 .517		54.6	\bigcirc－
February，	29.913	$\bigcirc 108$	61.2	${ }^{6.6} \dot{\mathscr{m}}$
March，	29.865	－ 078	66.3	5.1 \％
April，	29.760	辰 105	74.9	$\left.\begin{array}{l}8.6 \\ 46\end{array}\right\}$
May，	29.664	氝先 096	79.5	1.3 －
June，	29.515	$\stackrel{ \pm}{\circ} 149$	80.8	
July，	29.489	026	80.1 80.0	0.1 ：
Angust，．	29.468	［ 021	80.0 -9.3	0.7 \}
September，	29.650 29.837	$\stackrel{8}{\sim}$	79.3	4.6 4
Octoher，	29.837 29.997	遏㗵\｛ $\begin{aligned} & 187 \\ & 160\end{aligned}$	74.7 64.9	9.8 ¢ ${ }^{\text {9 }}$
December，	30.998 」	$\stackrel{\text { ¢ }}{ } 001$	55.8 J	9.1 J

Reply to lst Question.

Having attempted, as well as I am ahle, to satisfy the curiosity of the Burmese philosopher, on the ahove mentioned points, I trust I may, in return, be allowed to put a query or two to him, relating to the moon, as well as to Conets, [which I should, with reference to his question, suppose to have little connection with one another, hecause, the former is a planet, secondary to, or dependent on, the earth, around which, she describes her epicycloidal course; the earth, again, being dependent on the sun, and the sun appearing to govern the Comets, as they are all believed, or found, to pass round him] : if his biglmess cannot answer these questions, I hope that some other person, equally anxious for such investigations, will favour me hy doing so.

Question 1st.

Why may not such comets as we know of, especially those, which have extremely elongated elliptical orbits, be considered, to possess two centres or foci within their orbits, one of them being our sun, and the other, any other sun, or star. Would not this disposition, supposing it to have been adopted all over the universe, have the effect of keeping the numerous systems in equilibrio, the comet incessantly acting as a link, or chain, connecting any two [or more ?] of these systems, with the neighbouring ones ?

Question $2 n d$.

If the moon hare no.atmosphere, [as is asserted by astronomers,] how is it possible to account for the distinct view, we sometimes obtain, of the circular dark part, which she presents at night ; I mean, that part which is involved in shadow when the moon is in either her first or her last quarter ?

Question $3 r d$.

Has it ever been ascertained, in what proportion, fluids are attracted, by the sun and moon, [or hy any other bodies,] in terms of their specific gravities?

Are they, or are they not, attractcd, inversely as the cube roots of their specific gravities; the distances of each fluid, from the centre of attraction, being equal ?

Camp near Calpie, June, 1833.

> I am, your obedient servant,
> W. BURT, Engs.

To the Secretary, Phl. Class, Asiatic Society, Calcutta.

> [European extracts.] 9.-Cave of Secanderiah, near Tabriz.

As the celebrated Cave of Secanderiah, resembling the Grotto del Cane in Italy, was only distant six miles, I proceeded to the village of Secanderiah, situated at the mouth of a very strong defile, formed by the river of Sied-abad; and having procured a numerous party of villagers with tools, combustihles, \& c., set ont determined fully to examine the care, or at least to ascertain to what extent the
noxious vapour existed; we also took some fowls to see the effect procured on them. After a fatiguing walk of three miles, up rocky steep ravincs, we arrived at the entrance of this singular carern, the mouth of which was fifty feet wide and thirty feet ligh, descending very rapidly to a depth of thirty feet.

The guides set fire to some brishwood, and found the air much less noxious than usmal; and it was only after a descent of 10 feet that we felt any inconvenience. We were absohtely standing on the bones of some animals which had perished there upon a former occasion; we remarked a dog, a deer, and two foxes: the head of a wolf lay at some distance. We, at the same time, put to flight a great number of pigeons, who build in the roof of the cave. We found that fire was extinguished at a few fcet below where we stood, and the fowls died in half a minute. The sides of the cave lad many marks of sulphur in powder amongst the soft sand and limestone, which were also strongly coloured with iron. Though the fire made with dry brush-wood and thorns, even when sprinkled with naphtha, was instantly extinguished, port fires and fuses burnt nearly the same time as in the open air. I was, therefore, enabled to fire a quantity of gunpowder at the very bottom. The quantity amounted to several pounds at the time, and that repeated often, had the effect of so entirely filling the care with smoke, that we could no longer see any thing at the bottom. On again throwing in some fowls, they soon made their escape, and fire burnt at the bottom. I would not, however, allow any of the people to descend, which they appeared willing to do; a dog also ran in and returned in a few minutes. On a former occasion, when this cave was visited by a party of the Mission, accompanied by Mr. Browne, the celebrated African traveller, fire would not burn two feet below the entrance, and oppression was felt close at the month of the cave. Mr. Browne entered some paces by holding his breath, but an English officer attached to the Mission had nearly perished in attempting to follow him. He was instantly dragged out, and recovered with some difficulty. In the winter (subsequently to my second visit), after a strong gale, the wind from the N. W. had blown for some days directly into the mouth of the cave : we were enabled to walk all over it, and only in a deep hole, at the bottom, did there exist any noxious air. There a fowl died in two minutes, and from its cries appeared to suffer much. After sixty feet, we found the cave again ascended, and curved a little to the right : it then bccame exceedingly narrow and very low, forming a kind of passage, which did not allow of standing up; we could not see to the end of this even with a reflecting lamp, and none of us felt inclined to prosecute the discovery. I have only mentioned these circumstances to prove how much the extent and force of the vapour are affected by the state of the atmosphere, and by particular circumstances. As the ground slopes rapidly from the mouth of the cavern, both to the ravine and inwards, it might be cleared away with little difficulty, and the heavy noxious gas thus allowed to pass off; but with the exception of forming a large winter stable for sheep, no other good purpose conld be answered by it; there was formerly a human skeleton, which has been removed; it was that of an old man in the village, who, tired of life, took this way of ending his misery; the peasants considered the circumstances of the cave being accessible little short of a miracle, but were much disappointed at not finding the treasure said to have been deposited there by Alexander, from whom it derives its name.-Monteith's Tour.
Jour. Geog. Soc. iii. 6.

INDEX.

Page.
Abbas Mirza, Prince of Persia, 147
Abú, Jain Temples of, 161
Adi Budla System, 59
A. K.'s Note on Trisection, 159
Ali Mardan Khán's Canal, 109
Alluvium, Caleutta, Section of, 371
Alum, Native, of Nipal, 482
Analysis of Books,....380, 417, 551, 597
Analyses, Chemical, 434
Analysis of Coal, 263, 264, 368, 549, 596, 647
———or Limestone,
402
402
of Salajit, 482
of Sulphate of Iron, 321
of Ashes of Plants, 322
Ancient Canals in Dethi, 105
Annealing, Effects of, on Metals, $1+1$
Arts, Indlian, Notices of, .. 158, 299, 249
Asiatic Society, (See Society.)
A -tronomy, Report on, 48
Astronomical Observations, Madras, 880
Attraction, on the Laws of, 41318
Ava, Mines of,
75
75- Richardson's Route from,.
59Ayoon-ool Ilisáb, Extract from
552Bactrian Coins, Note on 37,312
05Balkh, Description of,
15Bamián Idols, Account of the,
561
Bancoora, Climate of, 383
Banyan Tree in Mysore, 47
Barometer, Extraordinary Fall of, 427
——, on Compensation 258
——, Thermometrical, 194
Wet, Theory of,. 260, 64 260, 64
Barometrical Elevations, 621, 643
Batavian Researches, Analysis of, 597
Bees' Love for Mango, 355
Bláratpúr, Marriage at, 273
Bhúrja, Mountain Birch, 337
Birds, Catalogue of, in Dholbhúm, 597
Boileau's (Capt.) Description of Agra Sun-dial, 251
Bokhara, Gerard's Account of, 21
-_, Burnes' Description of,..... 224, to Meshid, Gerard's Route
from, 143
Bombay Harbour, Rise of Spring- tides in, 247
Bones in Hyderabad Caves, 77
——--, Fossil, of Jabalpúr, 151, 205, 586
——--, of the Jamna, 629
---, Human, in France, 632
in Delta alluvium, 649
Borabhum, Birds of, 569
Boring Experiment, Report on, 369
Page.
Boston, Ice Trade of, 491
Botany, Indian, Notice of,. 156
Boulderson, (H. S.) on Barometer at Barelly, \&c. 644
Branley, (M. J.) Nipal Articles pre- sented by, 367
Brewster, (Dr.) on coloured lights, 494
Bridge, Rustic, 267

- _ Suspension, ucar Ságar, 538
Budhist. Sect of Sakya, 385
Burt, (Lieut.) Replies to the Ques- tions of the Burnicse Prince, 653
Burnes' (Licut. A.) Account of Tem-
ples on Mount A bú,
ples on Mount A bú, 161 161
- Description of Bokhara, 224
Route to Bokhara, 1
- on the Bamián Idols, 661
der, 365
Bits of Bainian, Description of, .. 7, 561
Calidása's Poem, Uma, 329
Campbell, (Dr. A.) on Earthquake of
Nipal, 636
C. (A.) on Salajit, 482
Canal, Delhi, Description of 105
——, Doab, Ditto, 111
C-_, of Feroz Shah 114
385
Catalogue of Indian Woods, 168
- of Nebulæ, Herschell's, \&c. 252
- of the As. Soc. Musenm, 97
Caves, at Secanderiah, 658
Cedar Tree, $3 \ddagger 3$
Census of Múrshcdabad, 567
Clarak-píja, 609
Coal from Arracan, 263
— from Hoshungabad, $4: 35,647$
- from Moradabad, 264
- from Pesláíwar, 267
——, Khyook Phyoo,.. 596
-, Syneg Kyong, 369 ; Oogadong, 368
of, 47
Cochineal of Herát, 652
Coins in Asiatic Society's Cabinet,. 27
--, Bactrian, 37, 312, 405
——, Hindú, 649
——, Mahomedan, 39
——, Roman, from Buxar,. 368
204
Collection for the Museum, 588
Colvin, (Major) on Delhi Canals, 105
Conybeare, (Rev.) on Indian Geology, 606
Copper Mines of Nellore 95
Cracroft, (W.) Experiments in Radi- ation,. 649Csoma, A. de Körüs's MSS. of Kah-
gyur,. 367
on Sakya Race,on the Kálí
Chakra, or Adi Budha System, 57
a Tibetan Passport202
D'Amato Guiseppe's Description of Ava Mines, 75
Dclhi Student's Journal, 19
Dholbhúm. Birds of, 597
Diamond Mines 403
Doab Canal, Water Mills of, 360
Dost Mahomed Khán, 3
Dugone, Notice of the 100
Dum Dum, Bones discovered at 649
Dyeiug of Khurwa Cloth, \&c........ 151
Earthquake in Nipal,......438, 564, 636Eclipses of Jupiter's Satellites, at
Chuprah, 41
Everest's (Rev. R.) Geological Re- marks, 547
Ghazipúr, 602
Evaporation at Bokhara, 17
Ewer's,(W.) Observations of Jupiter's Satellites, 41
Fish, Fall of, from the Sky, 650
Flowers, Celestial, Fall of, 351
Fossil Bones, 151, 205, 586, 629, 632, 64
--. Shells,94, 205, 270, 583, 639
465
Gale, 21st May, 1833, 427
482
Garjan Oil, 93
Geides (Dr. W.) on the Climate of Nagpur, 239
Geological Society's Instructions, 557
Geology, Mirzapúr to Sígar, 475
——— of Hyderabad, 392
— of India, Sketch of, 605 157
Geard (Capt P) Met, Obse
Geard (Capt P) Met, Obse Gerard's (Capt. P.) Met. Obs. 615
--- (Dr. J.) Route from Bokhara
to Meshid, 143
- - Note from Herát, 652
Ghaghar, Sundy bed of the, 108
Ghazipúr, Temperature of, 602
Gold, Dilatation of, by Heat, 142
—— Miucs, of Mount Ophir,, 497
-- Sandin Moradabad District, 265
Greek Coins, Account of, 27
Hanuman's Exploits, 348
Heights, Mcasurement of,.. 194, 621 645
Herbert, (Capt. J. D.) Death of. 495
Herschcll's (Sir J. S. W.) Catalogue of Remarkable Stars, 253
Himálaya, Legend of, 329
Hindúcoins, 649
5
Hodgson's Nipal Zoolo..... 418
Tribes 217
Hot Spring of Pachete 46
Hutton (T.) on Tailor Bird's Nest,. 502
--, Strictures on, 374
Page.
Hyde, (Dr.) Extract from,
Page. 202Hyderabad, Geology of,
Ice, Manufacture of, 392
8-, Importatiou oí,
Indian States, Area of 488
Indo-scythic Coins, 405
Inscription, Aucient, of Ceylon, 548
518
Iron Miues, 402
- Suspension Bridge, 538
Jain Temples on Mount Abú, 161
Japanese Mirror, Dr. Brewster's Ex- planation of, 214
Jeffreys (J.) on Laws of Attraction and Repulsion,................441, 506Journal, Madras Literary,557
Journey from Ava to Kcndít,. 59
Kabúl, Descriptiou of, 3
Kala Cluakra System, Origin of, 57
Kálí Kishen, Raja, on the Túla, 615
Writing, 613
Kemaou, Report on the Bhotia Me- hals of, 551
Kerr, Copper Specimens sent by Mr. 94
Kúkúmb-ka Tél, 592
Light, Effect of Coloured, 491
Linnean Soc., Extracts from Proceed- ings of, 156
Lloyd, (Licut.) Catalogat of his Spe- cimens 157
L. D.'s Remarks on Hutton, 374
Lloyd's (Capt.) Temperature of Nag- púr, $5+3$
Lushington, (G. T.) on the Jâts,.... 273
McRitchie's Meteorological Registerat Bancoora,383
Madras, Lit.Soc. Proceedings of. 154, 550
Malcolmson (Di.) on Caves near Hy- derabad, 77
———— on Fossil Bones, 94
77
Manufacture, Native, of Turpentine, 249
Marriage of the Jàts, 273
Manritius, Contributions from, 95
Metals, Expansion of, 130 206
Meteorological Register, Bijnore,
Meteorological Register, Bijnore,
M_, Bankura, 383Chinsurah, 86
Gázipúr,.. 604
Kotgarh, . 615,Mozuferpár,208,Nagpár, 239,542, Singapúr,. 429429
, for Calcutta
at the end of each month.
Metre of Hindu Poetry, 330
Military Tribes of Nipal, 217
Milking of the Earth, 332
Mill, (Rev. Principal's) Translation of UMA 329
Mirror, Japauese, explained, 214
Mirrors, of Fusible Alloy, 559
Mines of Jewels in Ava, 75
Monteith's Description of Persia, .. 658
Moorcroft, Grave of, 18
Page.
Moríd Beg, 11
Morrieson's, Trisection of an Angle, 71
Mozufferpar, Climate of, 208
Murshedalyad, Census of, 567
Museum, Catalogue of, 97
Nagpír, Climate of, 239, $5+2$
Nash, (D. W.) On Progressive Deve- lopment of the Vertebrata 465
Newbold, (Lt. J. T.) Journal of, 491
Nipal, Military Tribes of, 217
- Paper stuff 417
- Zoology, 273
Observations of Lunar transits. 432
Oliver, (Col. T.) Astr. Obs. 432
Onslow, (W.) Coins presented by, 94
Ophir, Visit to Mount, 497
Opium, Substances in 495
Ornithology of Dholbhúm, 597
Oxus River, 16
Panchakí, Description of, 359
Panchpadder Salt works 365
Pcsháwar to Bokhara, Route front,. 1
Pearson, (J. F.) on Coll. Nat. 588
-_-- on Strychnia, 42
on Zoological paperof Asiatic Researches,417
Pottery on Spiraculum 590
Pottery Glazed, account of. 209
Presgrave's (Major D.) Bridge at Ságar, 538
Prinsep, (J.) Account of Grcek Coins, 27
Persiando. 36, 40
Bactrian ditto,37, 405
Hindá ditto, ± 72, 649
Chemical Analyses 434
Description of a Com
258
pensation Barometer,
sion of Metals, 130
--- Note on Nárpúr Climate, 532
----_- on Boilin 194
--.-- on Jabalpúr Fossils, 583
-_-- on Jamna Fossils 622
Proceedings, see Society.
Progress of European Science, 48
Protraction, mode of correcting, 79
Questions of Burmese Prince, 47, 653
Radiation, Experiments on, 649
Railway, Liverpool 559
Ramcomul Sen, on the Chárák-púja 689
Ravenshaw's (E. J.) Meteorological
Register of Bijnore, 207
radabad 264
Reply to Burmese Prince, 653
Report on Boring, 369
- on Publication 323 588
Repura, Laws Coll.............
Repura, Laws Coll.............
Repulsion, Laws of, 506
Revenue from Delhi Canals. 125
Richardson's March from Ava to Kendát 59
Robinson's Anatomy of the Dugong, 100
Route, Mode of Protracting correct- ed, 70Page.
Royle, (Di.) Collections of, 156
Russian Slaves in Bokhara, 237
Sígur, Fossil Shells of, 376, 542
-, Cooloy 478
Salajit of Nipal, 482
Saline Deposits in IIyderabad, 77
Saltpetre, Manufacture of 23
Salt-works of Panchpadder, 365
Sanskrit Poem, Uma, 357
Satellites of Jupiters, Eclipses 41
Schlegel, Prof, on Bactrian Coins, 407
Shakya Race, Origin of, 385
Shells, Recent and Fossil, 270
Singapór, Clinate of, 428
Silver, Dilatation of, by heat, 342
S. J. on Trisection, 485
Society, Asiatic, Proccedings of, 43 ,
$91,1+9,213,262,323,367,546, .$. 645
Society, Literary, of Madiras, 154
Society, Royal, Anniversary, 375
Spilsbury, On Fossil Elephant, 586
Spry, (Dr. H. H.) Fossil shell dis:covered by376
- Fossil Shells, 639
Standard Bar, Expansion of, 138
Stephenson on Salajit, 605
Strychnia, New Mode of Preparing, 42
Sundial at Agra, 251
Sutherland, (Capt. J.) on IndianStates480
Swiney's, (Dr.) Ancient Coins, 405
Swinton, (G.) Farewell Address to, 94
Table of Boiling Points, 199
ture of Air, 200
of Shells, 270
-- of Meridional Lengths, 271 216
Taibe Ni ,
Taibe Ni ,
Tailor-Bird, Nest of the, 502, 648
Taylor's Ast. Obs. Madras, 380
Thermoncter, measurement of heights with, 194
Thor, Hindù parallel to, 349
Tibetan Passport, Translation of a. 201
Tickel, (Lt. J.) Description of Birds, 597
Tides in Bombay Harbour, $2+7$
Tides, Desiderata regarding, 151
Traill's Report on Kcmaon,. 551
Trebeck, Grave of,. 14
Trisection Instrument, Defence of,. 485
Turpentine, Manufacture of, 71 249
Tytler (J.) on Arabic Extraction of Roots, 552
Vertebrata, Progressive Develop- ment of, 465
Voysey's Geological Reports,. . 298, 392
Umá, Legend of, 329
Unicorn Fish, Accident from, 647
Wallich's (Dr. N.) Catalogne of In- dian Woods 167
Warlow's Catalogue of Maminalia and Birds 97

Page.

Water-mill, Native, 359 Wise's (Dr.) Experiments on Ice, .. 80 Woollaston's Thermometrical Barometer, 194
Woods, Indian, Catalogues of, 167

Wylie's (Dr.) Meteorological Observations,............................. . 542
Yâk, Bos Grunniens,................ 342
Zoological, Indian, Catalogues of, .. 377
Note on, 417

ERRATA.

```
Page 37 line 35 for 'Col. Swiney,' read 'Dr. Swiney.'
    57 - 23 for 'Bu-stom,' read 'Bu-ston.'
    \(60-18\) for 'grain,' read 'gram.'
    70 - 29-30 for 'in 17 hours 55 minutes,' read 'in the year 1755.'
    71 - 23 for ' (5.1)' read ' (6.1)'
    for '(6. ax.)' read ' (ax. 6.1)'
    for ' 5.1 ' read '(6.1).'
    for 'the circle,' read 'a circle.'
    after ' G A' insert ' (Fig. 3.)'
    for ' and also touches,' read' and A D also touches.'
    after 'A B C,' insert ' (Fig. 4.)'
    after 'A B C,' insert ' (Fig. 5.)'
        \} for 'J.S. Lushington,' read 'G. T. Lushington.'"
        for ' BC,' read ' BG.'
        for ' \(\mathrm{BE} \frac{1}{3} \mathrm{BC}\),' read ' \(\mathrm{BE}-\frac{1}{3} \mathrm{BC}\).'
        for ' to,' read ' therefore.'
        for ' others,' read 'other."
        for ' further from,' read ' towards.'
        for 'valued,' read 'salient.'
        for ' \(\frac{1}{3}\left(\mathrm{ABI}+18\right.\), ' \(\mathrm{read}^{\prime} \frac{1}{3}\left(\mathrm{ABI}+180^{\circ}\right)\).
        7 for 'Cardwide,' read ' cardioide.'
        - 270, under the word Fahrenheit, insert the following figures omitted by mistake:
        \(633^{\circ} .2466381 .2362 .2356 .8 \quad 384.8365 .8452 .2381 .2\)
        272 , in the mean height of the Barometer at 4 1. m. for ' .545,' read '. 513 .'
        - 306 line 16 after 'Iskardo,' insert [Skardo, see mention of this place made by
        M. Csoma de Körös in vol. i. p. 125.]'
    - 334 - 10 for ' craigs,' read ' crags.'
- 314 - 5 after 'Indus,' insert 'The date PIZ or 117 of the æra of the Seleu-
        cidæ, shews this to be a coin of Antiochus the Third: the
        emblem of a ship was common to Tyre and Sidon, and other sea-
                port towns.' [See Calmet's Dictionary of the Bible, vol. iii.]
    315 - 6 for' 'antiquity,' read ' antiquities.'
    \(316-17\) after 'ABHimaNYA' insert 'comma.'
    \(319-5\) for ' \(92^{\prime \prime} .174\),' read ' \(9^{\prime} 2^{\prime \prime}, 174\),'
    for '118.7,' read- ' \(1^{\prime} 18^{\prime \prime}, 7\) ' and for ' \(1^{\prime} 8^{\prime \prime} .4^{\prime}\) read- \({ }^{6} 1^{\prime} .8^{\prime \prime}, 4\). '
    for 224.5 ,' read ' +2 ' \(24^{\prime \prime} 5^{\prime}\) ' and for ' 042.7 ' read ' \(+0.42,7\).'
    for ' scarcely or ever,' read ' seldom.'
    for 'alternate 10 and 11 syllables,' read 'alternate 11 and 12
```



```
—— \(390-27\) after 'KARNA,' insert '(T. rNa-va-chan), and dele the same word
        in the 29th line.
    —— 392 - 7 for 'Gnag-hjog,' read 'gnas-hjog.'
    418 - 18 for 'stupenduous,' read ' stupendous.'
    438 - 24 for ' (vague) 110 \&c.' read '11 \(10+28=1138^{\prime}\) by Mr. W.
        Ewer's Chronometer.
    449 - 24, 32. for 'olefint,' read 'olefient.'
    - - 26 for 'heat by,' read 'heat due to.'
    455 - 7 for 'operating,' read 'operated.'
    Also supply brackets to inclose the following paragraphs:
    Beginning with page 446, line 6, and ending page 448, line 28.
    Ditto ditto page 449, line 3, ditto ditto page 449, line 34.
    472 line 21 for 'lucertina,' read ' lacertina.'
    489 - 36 for 'extent of coast,' read ' extent of land frontier to the East,
                North, and West of the British Possessions in India.'
    - - - 18 for 'thus weighed, the,' read 'thus the.'
    - 492 - 12 dele lifts.
    - 205 - 17 jor ' lime and stone,' read ' limestone.'
    - 263 - 7 for 'Ludiya,' read 'Sadiya.'
    309 - 36 after 'building,' insert (See plate xix).
    549 - last after ' the fossil shell,' insert ' (See plate xx ).'
```


DIRECTIONS TO THE BINDER.

The sheets of Buchanan's Statistics are to be separated from the monthly numbers, and (being now complete) to be bound as a separate volume. The sheets of Appendix headed "Indian Monetary System" are also to be separated, and reserved to form part of a future volume.
The Plates may either be bound up at the end of the volume, or placed in the following order:
Plate I. Greek Coins, Pl. V. to face page 32
II. Persian Coins, Pl. VI. 40
III. Tibetan Text, 58
IV. Dr. Richardson's Route from Ava to Kendát, 70
V. Trisection of an Angle, 72
[V. Sketch of Delhi Canals, to be cancelled.]
VI. Sketch of Delhi Canals, 105
VII. Expansion of Metals, 182
VIII. Compensation Barometer, 258
1X. Turpentine Still, \&c. 249
X. Rustic Bridge, 267
XI. Bactrian Coins, Pl. VII. 318
XII. Delhi Water Mill, 364
XIII. Geological Section through Hyderabad, 304
XIII. (bis) Section of the Calcutta Alluvium, 370
XIV. Bactrian Coins, Pl. VIII. 416
XV. Trisection Instrument, 488
XVI. Iron Suspension Bridye, 540
XVII. Geological Sections, 557
XVIII. Mount Ophir, and Tailor Bird's Nest, 502
XIX. Colossal Idols of Bamian, 561
XX. Fossil Bone and Shell of Jabalpúr, 583
XXI. Narsinhpír Fossil Bones, 588
XXII. Urnamental Persian Writing, 613
XXIII. Kankar Formation in Slabs, 62b
XXIV. Sections of Jamna Banks, 627
XXV. Jamna Fossil Bones, 632
XXVI. Site of the Ságar Fossils, 610

$2+\pi r+\pi i n$

[^0]: * For these the cost of printing and paper only is charged.

[^1]: * Originally 32 pages only were given in each number, latterly 64.

[^2]: 1st January, 1834.

[^3]: * See Gleanings in Science, i. 23.-Account of fossil elephant bones found in the river near Calpi. As no further notice was taken, at the time, of Dr. Duncan's discovery, I take this opportunity of publishing the extract from Mr. J. Lescie's letter which brought the subject to the notice of the Physical Class of the Asiatic Society.
 "I had the pleasure of sending you on the 6 th, two portions of the fossil bones of an elephant, for which I am indebted to my friend Dr. Duncan at Calpí the following is an extract from his letter which accompanied them: 'The spot on which these remains were found is nearly three miles up the river on the opposite side to Calpí ; at the time of visiting them there was not a long bone whole; proba. bly a tooth might have been procured, but certainly not now, the remains being scattered by the natives who accompanied us, in all directions. I however send you what I preserved, part of a long bone (the femur) and a portion of a tusk, the lamellated structure of which is very distinct. The remains lay about 40 yards from the edge of the water, then very low, but which during the rains must evidently overflow the spot to an equal or greater extent. They appeared but superficially imbedded in the slightly coherent earthy stratum, which has been deposited by the waters on a bottom of kankar, of which the bed and banks of the river were here composed.' "

[^4]: * The composition of the flag kankar aualysed by me was as follows :

 Carbonate of lime, 42.2
 Fine sand,.................. 57.8

[^5]: * Annales de Chimie, Fevrier, 1833.

[^6]: * Mr. Walters informs me that it was also felt at Chittagong.-Ed.

[^7]: * My barometer stands on an average .044 lower than the Surveyor General's, which will make an addition of 50 feet necessary to the altitude calculated.-Ed.

[^8]: * Vide Ferguson's Astronomy, of 1790 , p. 88.

